1 |
胡江溢, 杨高峰, 宋兆欧, 等. 支持新型储能发展的国际政策与中国发展模式探讨[J/OL]. 电网技术, 2023: 1-11. (2023-12-01). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DWJS20231128003&dbname=CJFD&dbcode=CJFQ.
|
|
HU J Y, YANG G F, SONG Z O, et al. Discussion on international policies supporting the development of new energy storage and China's development model[J/OL]. China Industrial Economics, 2023: 1-11. (2023-12-01). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DWJS20231128003&dbname=CJFD&dbcode=CJFQ.
|
2 |
KUMAR K, RITHVIK G, MITTAL G, et al. Impact of fast charging and low-temperature cycling on lithium-ion battery health: A comparative analysis[J]. Journal of Energy Storage, 2024, 94: 112580. DOI: 10.1016/j.est.2024.112580.
|
3 |
陈泽宇, 张渤, 熊瑞, 等. 动力电池低温极速自加热系统加热一致性及其影响因素的建模分析[J]. 机械工程学报, 2021, 57(22): 226-236. DOI: 10.3901/JME.2021.22.226.
|
|
CHEN Z Y, ZHANG B, XIONG R, et al. Modeling analysis of heating consistency and influencing factors of low-temperature extreme-speed self-heating system of battery[J]. Journal of Mechanical Engineering, 2021, 57(22): 226-236. DOI: 10.3901/JME.2021.22.226.
|
4 |
WU H F, ZHANG X J, CAO R F, et al. An investigation on electrical and thermal characteristics of cylindrical lithium-ion batteries at low temperatures[J]. Energy, 2021, 225: 120223. DOI: 10.1016/j.energy.2021.120223.
|
5 |
WANG Y J, ZHANG X C, CHEN Z H. Low temperature preheating techniques for lithium-ion batteries: Recent advances and future challenges[J]. Applied Energy, 2022, 313: 118832. DOI: 10.1016/j.apenergy.2022.118832.
|
6 |
何锡添, 孙丙香, 阮海军, 等. 锂离子电池变频变幅交流低温自加热策略[J]. 电工技术学报, 2019, 34(9): 1798-1805. DOI: 10.19595/j.cnki.1000-6753.tces.180604.
|
|
HE X T, SUN B X, RUAN H J, et al. A variable-frequency and variable-amplitude AC low-temperature self-heating strategy for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2019, 34(9): 1798-1805. DOI: 10.19595/j.cnki.1000-6753.tces.180604.
|
7 |
WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. DOI: 10.1038/nature16502.
|
8 |
ZENG X H, LI J J, QIAO L L, et al. Experimental study on the performance of power battery module heating management under a low-temperatures charging scenario[J]. International Journal of Heat and Mass Transfer, 2024, 225: 125388. DOI: 10. 1016/j.ijheatmasstransfer.2024.125388.
|
9 |
李夔宁, 王靖鸿, 谢翌, 等. 锂离子电池低温复合加热策略及优化[J]. 储能科学与技术, 2022, 11(10): 3191-3199. DOI: 10.19799/j.cnki.2095-4239.2022.0205.
|
|
LI K N, WANG J H, XIE Y, et al. Low-temperature compound-heating strategy and optimization of lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(10): 3191-3199. DOI: 10.19799/j.cnki.2095-4239.2022.0205.
|
10 |
张承宁, 雷治国, 董玉刚. 电动汽车锂离子电池低温加热方法研究[J]. 北京理工大学学报, 2012, 32(9): 921-925. DOI: 10.15918/j.tbit1001-0645.2012.09.019.
|
|
ZHANG C N, LEI Z G, DONG Y G. Method for heating low-temperature lithium battery in electric vehicle[J]. Transactions of Beijing Institute of Technology, 2012, 32(9): 921-925. DOI: 10. 15918/j.tbit1001-0645.2012.09.019.
|
11 |
E J, QIN Y S, ZHANG B, et al. Effects of heating film and phase change material on preheating performance of the lithium-ion battery pack with large capacity under low temperature environment[J]. Energy, 2023, 284: 129280. DOI: 10.1016/j.energy.2023.129280.
|
12 |
ZHANG J M, LIU H, ZHENG M X, et al. Numerical study on a preheating method for lithium-ion batteries under cold weather conditions using phase change materials coupled with heat films[J]. Journal of Energy Storage, 2022, 47: 103651. DOI: 10.1016/j.est.2021.103651.
|
13 |
熊瑞, 王侃, 郭姗姗. 锂离子动力电池低温复合加热方法[J]. 机械工程学报, 2019, 55(14): 53-59. DOI: 10.3901/JME.2019.14.053.
|
|
XIONG R, WANG K, GUO S S. Hybrid preheating method for lithium-ion battery used in cold environment[J]. Journal of Mechanical Engineering, 2019, 55(14): 53-59. DOI: 10.3901/JME.2019.14.053.
|
14 |
LIU J H, WANG X. Investigating effects of pulse charging on performance of Li-ion batteries at low temperature[J]. Journal of Power Sources, 2023, 574: 233177. DOI: 10.1016/j.jpowsour. 2023.233177.
|
15 |
CAI F Y, CHANG H W, YANG Z B, et al. A rapid self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current without external power[J]. Journal of Power Sources, 2022, 549: 232138. DOI: 10.1016/j.jpowsour. 2022.232138.
|
16 |
CHEN S Q, ZHANG G X, WU C J, et al. Multi-objective optimization design for a double-direction liquid heating system-based Cell-to-Chassis battery module[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122184. DOI: 10.1016/j.ijheatmasstransfer.2021.122184.
|
17 |
盛雷. 车用锂离子电池的热物性、热行为与液冷式热管理研究[D]. 上海: 上海理工大学, 2020.
|
|
SHENG L. Investigations of lithium ion batteries on thermophysical properties, thermal behaviors and liquid cooling thermal management for electric vehicles[D]. Shanghai: University of Shanghai for Science and Technology, 2020.
|
18 |
黄鹏, 郑岳久, 高寒, 等. 一种锂电池多模组联合均衡系统的设计[J]. 电子科技, 2020, 33(6): 40-45. DOI: 10.16180/j.cnki.issn1007-7820.2020.06.008.
|
|
HUANG P, ZHENG Y J, GAO H, et al. Design of a composite equalization system for lithium-ion battery modules[J]. Electronic Science and Technology, 2020, 33(6): 40-45. DOI: 10.16180/j.cnki.issn1007-7820.2020.06.008.
|
19 |
SHENG L, SU L, ZHANG H Y. Experimental determination on thermal parameters of prismatic lithium ion battery cells[J]. International Journal of Heat and Mass Transfer, 2019, 139: 231-239. DOI: 10.1016/j.ijheatmasstransfer.2019.04.143.
|