储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 791-798.doi: 10.19799/j.cnki.2095-4239.2024.0894

• 储能测试与评价 • 上一篇    下一篇

储能用高容量锂离子电池低温快速加热方法研究

匡智伟(), 张振东(), 盛雷, 付林祥   

  1. 上海理工大学机械工程学院,上海 200093
  • 收稿日期:2024-09-24 修回日期:2024-11-07 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 张振东 E-mail:1829806617@qq.com;usstzzd@usst.edu.cn
  • 作者简介:匡智伟(1999—),男,硕士研究生,研究方向为电池热管理,E-mail:1829806617@qq.com
  • 基金资助:
    国家自然科学基金项目(52472381);国家自然科学青年基金(52206267);中国博士后面上基金(2021M702191)

Research on low-temperature rapid heating method for high-capacity lithium-ion batteries in energy storage

Zhiwei KUANG(), Zhendong ZHANG(), Lei SHENG, Linxiang FU   

  1. School of Mechanical Engineering, University of Shanghai and Technology, Shanghai 200093, China
  • Received:2024-09-24 Revised:2024-11-07 Online:2025-02-28 Published:2025-03-18
  • Contact: Zhendong ZHANG E-mail:1829806617@qq.com;usstzzd@usst.edu.cn

摘要:

在低温环境下,电池加热是提升储能系统性能、延长电池寿命以及确保其安全性的重要技术手段。针对储能用高容量锂离子电池的低温加热问题,本工作考虑电池的尺寸效应及其各向异性的热传导特性,结合数值模拟和实验测试手段,提出了利用电热膜对电池模组进行快速加热的方法。探讨了电池加热功率、加热部位及模组多维度错位协同加热方法对电池温度场及其升温速率的影响。结果表明,电池的温升速率与加热膜输入功率之间呈现出线性关系。电池大面加热功率为350 W时,电池平均温度在118 s内可从-20 ℃上升至0 ℃,最大温度达到39.4 ℃,且291 s后电池组温度达到平衡。双侧面加热相比大面加热,其温度提高了18%,但材料成本减少了38%。实验结果验证了仿真模型的准确性,表明了本方案加热时间短、可靠性高,且可快速提升电池组温度。研究结果对户用储能设备的热管理技术开发及优化等具有一定的参考意义。

关键词: 锂离子电池, 加热膜, 低温环境, 快速加热

Abstract:

In a low-temperature environment, the heating of batteries represents a crucial technical means of enhancing the performance of energy-storage systems, extending the lifespan of batteries, and ensuring their safety. The objective of this study is to address the issue of low-temperature heating in high-capacity lithium-ion batteries used for energy storage. Consequently, we propose a method, that makes use of an electric heating film, for rapid heating of the battery module. This approach takes into account the size effect of the battery and its anisotropic heat transport characteristics and is supported by numerical simulation and experimental testing. This study examines the impact of battery heating power, heating sites, and the multidimensional staggered synergistic heating method of the module on the temperature field of the battery and its warming rates. Results demonstrate a linear relationship between the rate of battery temperature increase and the input power applied to the heating film. When the heating power of the larger side of the battery is 350 W, the average temperature of the battery increased from -20 ℃ to 0 ℃ in 118 s, with a maximum temperature of 39.4 ℃. The battery pack reached equilibrium after 291 s. Double-side heating increased the temperature by 18 % compared to large-side heating but reduced material costs by approximately 38 %. The experimental results corroborated the precision of the simulation model and demonstrated that the scheme exhibits a brief heating time, high reliability, and the capacity to rapidly elevate the temperature of the battery pack. These research findings hold significant implications for the development and optimization of thermal management technology for household energy-storage devices.

Key words: lithium-ion battery, heating film, low-temperature environment, rapid heat

中图分类号: