1 |
杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. DOI: 10.19799/j.cnki.2095-4239.2023.0287.
|
|
GAO Q X, ZHAO J T, LI G X. Research progress on fast-charging lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. DOI: 10.19799/j.cnki.2095-4239. 2023. 0287.
|
2 |
KANG Z H, LU C L, HU H Q, et al. Li-ion battery charging strategy based on multi-state joint estimation model[J]. Journal of Energy Storage, 2023, 72: 108309. DOI:10.1016/j.est. 2023. 108309.
|
3 |
LIU K L, ZOU C F, LI K, et al. Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5463-5474. DOI:10.1109/TII.2018.2866493.
|
4 |
VO T T, CHEN X P, SHEN W X, et al. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation[J]. Journal of Power Sources, 2015, 273: 413-422. DOI:10.1016/j.jpowsour.2014.09.108.
|
5 |
LIU K L, LI K, PENG Q, et al. A brief review on key technologies in the battery management system of electric vehicles[J]. Frontiers of Mechanical Engineering, 2019, 14(1): 47-64. DOI:10. 1007/s11465-018-0516-8.
|
6 |
KHAN A B, CHOI W. Optimal charge pattern for the high-performance multistage constant current charge method for the Li-ion batteries[J]. IEEE Transactions on Energy Conversion, 2018, 33(3): 1132-1140. DOI:10.1109/TEC.2018.2801381.
|
7 |
王泰华, 张书杰, 陈金干. 基于BP-PSO算法的锂电池低温充电策略优化[J]. 储能科学与技术, 2020, 9(6): 1940-1947. DOI: 10.19799/j.cnki.2095-4239.2020.0172.
|
|
WANG T H, ZHANG S J, CHEN J G. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm[J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. DOI: 10.19799/j.cnki.2095-4239.2020.0172.
|
8 |
PEREZ H E, HU X S, DEY S, et al. Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7761-7770. DOI:10.1109/TVT.2017.2676044.
|
9 |
唐鑫, 欧阳权, 黄俍卉, 等. 基于深度强化学习的锂电池快速充电控制策略[J]. 机械工程学报, 2022, 58(22): 69-78. DOI: 10.3901/JME.2022.22.069.
|
|
TANG X, OUYANG Q, HUANG L H, et al. Fast charging control for lithium-ion batteries based on deep reinforcement learning[J]. Journal of Mechanical Engineering, 2022, 58(22): 69-78. DOI: 10.3901/JME.2022.22.069.
|
10 |
王苏杭, 李建林, 李雅欣, 等. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. DOI: 10.19799/j.cnki.2095-4239.2021.0493.
|
|
WANG S H, LI J L, LI Y X, et al. Research on charging strategy of lithium-ion battery system at low temperature[J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. DOI: 10.19799/j.cnki.2095-4239.2021.0493.
|
11 |
CHEN Z, XIA B, MI C C, et al. Loss-minimization-based charging strategy for lithium-ion battery[J]. IEEE Transactions on Industry Applications, 2015, 51(5): 4121-4129. DOI:10.1109/TIA. 2015. 2417118.
|
12 |
ATTIA P M, GROVER A, JIN N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402. DOI:10.1038/s41586-020-1994-5.
|
13 |
LIU K L, HU X S, YANG Z L, et al. Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation[J]. Energy Conversion and Management, 2019, 195: 167-179. DOI:10.1016/j.enconman. 2019.04.065.
|
14 |
MATHIEU R, BRIAT O, GYAN P, et al. Fast charging for electric vehicles applications: Numerical optimization of a multi-stage charging protocol for lithium-ion battery and impact on cycle life[J]. Journal of Energy Storage, 2021, 40: 102756. DOI:10.1016/j.est.2021.102756.
|
15 |
WANG J, LIU P, HICKS-GARNER J, et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources, 2011, 196(8): 3942-3948. DOI:10.1016/j.jpowsour.2010.11.134.
|
16 |
LI Y J, LI K N, XIE Y, et al. Optimization of charging strategy for lithium-ion battery packs based on complete battery pack model[J]. Journal of Energy Storage, 2021, 37: 102466. DOI:10.1016/j.est.2021.102466.
|
17 |
雷旭, 陈潇阳, 于明加, 等. 基于SOC自适应分阶的动力锂电池两步优化快速充电策略[J]. 中国公路学报, 2022, 35(8): 65-78. DOI: 10.19721/j.cnki.1001-7372.2022.08.007.
|
|
LEI X, CHEN X Y, YU M J, et al. A two-step optimization of fast charging strategy for lithium-ion battery based on adaptive SOC segmentation[J]. China Journal of Highway and Transport, 2022, 35(8): 65-78. DOI: 10.19721/j.cnki.1001-7372.2022.08.007.
|
18 |
ZHAO G H, WANG Y J, CHEN Z H. Health-aware multi-stage charging strategy for lithium-ion batteries based on whale optimization algorithm[J]. Journal of Energy Storage, 2022, 55: 105620. DOI: 10.1016/j.est.2022.105620.
|
19 |
何青泽, 郑鹏, 吕星辰, 等. 基于改进蝙蝠算法的最小区域法圆度误差评定[J]. 组合机床与自动化加工技术, 2024(5): 162-165, 170. DOI: 10.13462/j.cnki.mmtamt.2024.05.034.
|
|
HE Q Z, ZHENG P, LYU X C, et al. Roundness error evaluation of minimum zone method based on improved bat algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(5): 162-165, 170. DOI: 10.13462/j.cnki.mmtamt. 2024. 05.034.
|
20 |
邢世雄, 陈国华, 孙川, 等. 基于改进蝙蝠算法的再制造装配体拆卸序列规划研究[J]. 机械设计与制造, 2024(12): 183-187. DOI: 10.19356/j.cnki.1001-3997.20240516.008.
|
|
XING S X, CHEN G H, SUN C, et al. Research on disassembly sequence planning of remanufactured assembly based on improved bat algorithm[J]. Machinery Design and Manufacture, 2024(12): 183-187. DOI: 10.19356/j.cnki.1001-3997. 2024051 6.008.
|
21 |
AHN J H, LEE B K. High-efficiency adaptive-current charging strategy for electric vehicles considering variation of internal resistance of lithium-ion battery[J]. IEEE Transactions on Power Electronics, 2018, 34(4): 3041-3052. DOI:10.1109/TPEL. 2018. 2848550.
|
22 |
徐鹏跃, 张国玲, 王涛, 等. 分数一阶电路等效模型估计锂离子电池SOC[J]. 电池, 2024, 54(1): 72-76. DOI: 10.19535/j.1001-1579.2024.01.016.
|
|
XU P Y, ZHANG G L, WANG T, et al. Estimation SOC of Li-ion battery by fractional first-order circuit equivalent models[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 72-76. DOI: 10.19535/j.1001-1579.2024.01.016.
|