储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 799-811.doi: 10.19799/j.cnki.2095-4239.2024.0808

• 储能测试与评价 • 上一篇    下一篇

一种并行多尺度特征融合模型开展的基于弛豫电压的锂电池SOH估计研究

王海瑞1(), 徐长宇1, 朱贵富2(), 侯晓建1   

  1. 1.昆明理工大学信息工程与自动化学院
    2.昆明理工大学信息建设管理中心,云南 昆明 650500
  • 收稿日期:2024-08-31 修回日期:2024-11-05 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 朱贵富 E-mail:1035248443@qq.com;zhuguifu@kust.edu.cn
  • 作者简介:王海瑞(1969—),男,博士,教授,研究方向为嵌入式与物联网技术、边缘计算等,E-mail:1035248443@qq.com
  • 基金资助:
    国家自然科学基金(61863016)

A parallel multi cale-featured fusion model for state-of-health estimation of lithium-ion batteries based on relaxation voltage

Hairui WANG1(), Changyu XU1, Guifu ZHU2(), Xiaojian HOU1   

  1. 1.School of Information Engineering And Automation, Kunming University of Science and Technology
    2.Information Technology Construction Management Center, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • Received:2024-08-31 Revised:2024-11-05 Online:2025-02-28 Published:2025-03-18
  • Contact: Guifu ZHU E-mail:1035248443@qq.com;zhuguifu@kust.edu.cn

摘要:

锂离子电池健康状态(state of health, SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种基于弛豫电压的并行多尺度特征融合卷积模型(multi-scale feature fusion convolution model, MSFFCM)结合极端梯度提升树(XGBoost)的SOH估计方法。MSFFCM通过多层堆叠卷积模块提取弛豫电压数据的深层特征,同时利用并行多尺度注意力机制增强了多尺度特征的捕捉能力,并将这些特征与统计特征进行融合,以提升模型的特征提取和融合能力。针对XGBoost模型,本工作应用贝叶斯优化算法进行参数调优,从而在多源融合特征基础上实现高精度SOH估计。实验验证基于两种商用18650型号电池的多温度和多充放电策略数据集,结果表明该方法的均方根误差(RMSE)和平均绝对误差(MAE)均小于0.5%,明显优于传统方法。本工作为锂电池健康管理提供了一种不依赖特定充放电条件的有效估计工具,有望在复杂的实际应用中发挥重要作用。

关键词: 锂离子电池, 健康状态估计, 弛豫电压, 并行多尺度特征, 特征融合

Abstract:

The estimation of state-of-health (SOH) in lithium-ion batteries is crucial for ensuring the reliability and safety of energy storage systems. However, existing SOH estimation methods are limited by single-feature extraction and dependency on fixed charge-discharge conditions, which hinders adaptability to dynamic operational environments. To address these challenges, we propose an SOH estimation approach based on relaxation voltage, integrating a parallel multiscale feature fusion convolution model (MSFFCM) with XGBoost. The MSFFCM model leverages multilayer stacked convolutional modules to extract deep features from relaxation voltage data while utilizing a parallel multiscale attention mechanism to enhance the capture of multiscale features. These features are then fused with statistical features to improve the model's feature extraction and integration capabilities. Bayesian optimization is applied to the XGBoost model for parameter tuning, enabling high-accuracy SOH estimation based on multi-source fused features. Validation experiments were conducted on datasets from two commercial 18650 lithium-ion battery types under varied temperature and charge-discharge strategies. Results indicate that the proposed method achieves a root mean square error and mean absolute error of less than 0.5%, significantly outperforming conventional methods. This study provides an effective estimation tool for lithium-ion battery health management without reliance on specific charge-discharge conditions, demonstrating promising potential for complex real-world applications.

Key words: lithium-ion battery, state-of-health estimation, relaxation voltage, parallel multi-scale features, feature fusion

中图分类号: