储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 812-821.doi: 10.19799/j.cnki.2095-4239.2024.0805
收稿日期:
2024-09-02
出版日期:
2025-02-28
发布日期:
2025-03-18
通讯作者:
马哲杰,李平
E-mail:y82220019@mail.ecust.edu.cn;y20190088@mail.ecust.edu.cn;lipingunilab@ecust.edu.cn
作者简介:
李薛茹(2000—),女,硕士研究生,从事燃料电池催化层表征研究,E-mail:y82220019@mail.ecust.edu.cn;
基金资助:
Xueru LI(), Zhejie MA(
), Ping LI(
)
Received:
2024-09-02
Online:
2025-02-28
Published:
2025-03-18
Contact:
Zhejie MA, Ping LI
E-mail:y82220019@mail.ecust.edu.cn;y20190088@mail.ecust.edu.cn;lipingunilab@ecust.edu.cn
摘要:
氢质子交换膜燃料电池(proton exchange membrane fuel cells, PEMFCs)具有无污染、高效率等特点,是理想的零碳排放发电装置,其成本、性能及耐用性与阴极催化层(cathode catalyst layer, CCL)的组成和结构密切相关。CCL主要由Pt/C催化剂、离聚物和孔隙区域组成,其中碳载体传导电子,离聚物传导质子,孔隙传输反应气体,这种复杂构成对精准表征其微观结构进而揭示构效关系带来了极大挑战。本文总结了CCL微观结构表征的研究进展,从催化层形貌、孔隙结构、离聚物及Pt纳米粒子分布这四个方面的表征,详细阐释了针对CCL内不同构成部分的各类表征手段,指出单一的表征方法无法揭示CCL内部的复杂精细结构,需要联用多种表征手法从不同尺度和不同维度进行观测。发展对CCL微观结构表征的方法有助于全面阐释燃料电池运行过程中催化剂、反应气体和离聚物之间的相互作用机理,有助于提供真实结构参数以精准构建CCL计算模型,掌握催化层内质量传递、热量传递、质子及电子传导等信息,为燃料电池的性能提升和技术瓶颈突破提供科学支撑。
中图分类号:
李薛茹, 马哲杰, 李平. 质子交换膜燃料电池阴极催化层微观结构表征研究进展[J]. 储能科学与技术, 2025, 14(2): 812-821.
Xueru LI, Zhejie MA, Ping LI. Research progress on microstructure characterization of cathode catalyst layer in proton exchange membrane fuel cells[J]. Energy Storage Science and Technology, 2025, 14(2): 812-821.
1 | WANG Y, CHEN K S, MISHLER J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007. DOI:10.1016/j.apenergy.2010.09.030. |
2 | 吴小员, 卢新宝, 董嘉璇, 等. 燃料电池汽车地方政策研究[J]. 储能科学与技术, 2021, 10(6): 1987-1997. DOI: 10.19799/j.cnki.2095-4239.2021.0455. |
WU X Y, LU X B, DONG J X, et al. Local policy for fuel cell vehicles[J]. Energy Storage Science and Technology, 2021, 10(6): 1987-1997. DOI: 10.19799/j.cnki.2095-4239.2021.0455. | |
3 | OHMA A, MASHIO T, SATO K, et al. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan[J]. Electrochimica Acta, 2011, 56(28): 10832-10841. DOI:10.1016/j.electacta.2011.04.058. |
4 | XIE B, ZHANG G B, XUAN J, et al. Three-dimensional multi-phase model of PEM fuel cell coupled with improved agglomerate sub-model of catalyst layer[J]. Energy Conversion and Management, 2019, 199: 112051. DOI:10.1016/j.enconman. 2019.112051. |
5 | FAN J T, CHEN M, ZHAO Z L, et al. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells[J]. Nature Energy, 2021, 6: 475-486. DOI:10.1038/s41560-021-00824-7. |
6 | LI X Y, WANG X J, HE J, et al. Construction of homogeneous catalyst layers at proton exchange membrane fuel cell cathodes[J]. Journal of the Electrochemical Society, 2023, 170(4): 044511. DOI:10.1149/1945-7111/accb0e. |
7 | KARAN K. PEFC catalyst layer: Recent advances in materials, microstructural characterization, and modeling[J]. Current Opinion in Electrochemistry, 2017, 5(1): 27-35. DOI:10.1016/j.coelec.2017.08.018. |
8 | GWAK G, LEE J, GHASEMI M, et al. Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13414-13427. DOI:10.1016/j.ijhydene.2020.03.080. |
9 | SHIN S J, LEE J K, HA H Y, et al. Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2002, 106(1/2): 146-152. DOI:10.1016/S0378-7753(01)01045-X. |
10 | SUZUKI T, TSUSHIMA S, HIRAI S. Characterization of the PEMFC catalyst layer by cross-sectional visualization and performance evaluation[J]. ECS Transactions, 2010, 33(1): 1465-1470. DOI:10.1149/1.3484639. |
11 | DURST J, LAMIBRAC A, CHARLOT F, et al. Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: Inlet vs. outlet and channel vs. land[J]. Applied Catalysis B: Environmental, 2013, 138: 416-426. DOI:10.1016/j.apcatb.2013.03.021. |
12 | THIELE S, VIERRATH S, KLINGELE M, et al. Tomographic analysis of polymer electrolyte fuel cell catalyst layers: Methods, validity and challenges[J]. ECS Transactions, 2015, 69(17): 409-418. DOI:10.1149/06917.0409ecst. |
13 | BLOM D A, DUNLAP J R. Preparation of cross-sectional samples of proton exchange membrane fuel cells for TEM characterization[J]. Microscopy and Microanalysis, 2003, 9(S02): 802-809. DOI:10.1017/s1431927603444012. |
14 | DE A MELO L G, HITCHCOCK A P, BEREJNOV V, et al. Evaluating focused ion beam and ultramicrotome sample preparation for analytical microscopies of the cathode layer of a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2016, 312: 23-35. DOI:10.1016/j.jpowsour.2016.02.019. |
15 | MORENO-ATANASIO R, WILLIAMS R A, JIA X D. Combining X-ray microtomography with computer simulation for analysis of granular and porous materials[J]. Particuology, 2010, 8(2): 81-99. DOI:10.1016/j.partic.2010.01.001. |
16 | EPTING W K, GELB J, LITSTER S. Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale X-ray computed tomography[J]. Advanced Functional Materials, 2012, 22(3): 555-560. DOI:10.1002/adfm.201101525. |
17 | POKHREL A, EL HANNACH M, ORFINO F P, et al. Failure analysis of fuel cell electrodes using three-dimensional multi-length scale X-ray computed tomography[J]. Journal of Power Sources, 2016, 329: 330-338. DOI:10.1016/j.jpowsour.2016. 08.092. |
18 | LITSTER S, EPTING W K, WARGO E A, et al. Morphological analyses of polymer electrolyte fuel cell electrodes with nano-scale computed tomography imaging[J]. Fuel Cells, 2013, 13(5): 935-945. DOI:10.1002/fuce.201300008. |
19 | SINGH R, AKHGAR A R, SUI P C, et al. Dual-beam FIB/SEM characterization, statistical reconstruction, and pore scale modeling of a PEMFC catalyst layer[J]. Journal of the Electrochemical Society, 2014, 161(4): F415-F424. DOI:10.1149/2.036404jes. |
20 | NAN N, WANG J X. FIB-SEM three-dimensional tomography for characterization of carbon-based materials[J]. Advances in Materials Science and Engineering, 2019, 2019: 8680715. DOI:10.1155/2019/8680715. |
21 | ZIEGLER C, THIELE S, ZENGERLE R. Direct three-dimensional reconstruction of a nanoporous catalyst layer for a polymer electrolyte fuel cell[J]. Journal of Power Sources, 2011, 196(4): 2094-2097. DOI:10.1016/j.jpowsour.2010.09.044. |
22 | SCHULENBURG H, SCHWANITZ B, LINSE N, et al. 3D imaging of catalyst support corrosion in polymer electrolyte fuel cells[J]. The Journal of Physical Chemistry C, 2011, 115(29): 14236-14243. DOI:10.1021/jp203016u. |
23 | OKUMURA M, NODA Z, MATSUDA J, et al. Correlating cathode microstructure with PEFC performance using FIB-SEM and TEM[J]. Journal of the Electrochemical Society, 2017, 164(9): F928-F934. DOI:10.1149/2.0581709jes. |
24 | KURODA C S, YAMAZAKI Y. Novel technique of MEA sample preparation using a focused ion beam for scanning electron microscope investigation[J]. ECS Transactions, 2007, 11(1): 509-516. DOI:10.1149/1.2780964. |
25 | KATAYANAGI Y, SHIMIZU T, HASHIMASA Y, et al. Cross-sectional observation of nanostructured catalyst layer of polymer electrolyte fuel cell using FIB/SEM[J]. Journal of Power Sources, 2015, 280: 210-216. DOI:10.1016/j.jpowsour.2015.01.085. |
26 | MONTEIRO S N, PACIORNIK S. From historical backgrounds to recent advances in 3D characterization of materials: An overview[J]. JOM, 2017, 69(1): 84-92. DOI:10.1007/s11837-016-2203-8. |
27 | LI J, MALIS T, DIONNE S. Recent advances in FIB–TEM specimen preparation techniques[J]. Materials Characterization, 2006, 57(1): 64-70. DOI:10.1016/j.matchar.2005.12.007. |
28 | HUANG J, LI Z, ZHANG J B. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Frontiers in Energy, 2017, 11(3): 334-364. DOI:10.1007/s11708-017-0490-6. |
29 | MORE K, BORUP R, REEVES K. Identifying contributing degradation phenomena in PEM fuel cell membrane electride assemblies via electron microscopy[J]. ECS Transactions, 2006, 3(1): 717. DOI:10.1149/1.2356192. |
30 | LOPEZ-HARO M, GUÉTAZ L, PRINTEMPS T, et al. Three-dimensional analysis of Nafion layers in fuel cell electrodes[J]. Nature Communications, 2014, 5: 5229. DOI:10.1038/ncomms 6229. |
31 | HIESGEN R, MORAWIETZ T, HANDL M, et al. Atomic force microscopy on cross sections of fuel cell membranes, electrodes, and membrane electrode assemblies[J]. Electrochimica Acta, 2015, 162: 86-99. DOI:10.1016/j.electacta.2014.11.122. |
32 | KOMINI BABU S, CHUNG H T, ZELENAY P, et al. Resolving electrode morphology's impact on platinum group metal-free cathode performance using nano-CT of 3D hierarchical pore and ionomer distribution[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32764-32777. DOI:10.1021/acsami.6b08844. |
33 | NORMILE S J, ZENYUK I V. Imaging ionomer in fuel cell catalyst layers with synchrotron nano transmission X-ray microscopy[J]. Solid State Ionics, 2019, 335: 38-46. DOI:10.1016/j.ssi.2019. 02.017. |
34 | PARK Y C, TOKIWA H, KAKINUMA K, et al. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells[J]. Journal of Power Sources, 2016, 315: 179-191. DOI:10.1016/j.jpowsour. 2016.02.091. |
35 | MIDGLEY P A, WEYLAND M. 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography[J]. Ultramicroscopy, 2003, 96(3/4): 413-431. DOI:10.1016/S0304-3991(03)00105-0. |
36 | NISHIOKA H, NIIHARA K I, KANEKO T, et al. Three-dimensional structure of a polymer/clay nanocomposite characterized by transmission electron microtomography[J]. Composite Interfaces, 2006, 13(7): 589-603. DOI:10.1163/156855406778440695. |
37 | ITO T, MATSUWAKI U, OTSUKA Y, et al. Three-dimensional spatial distributions of Pt catalyst nanoparticles on carbon substrates in polymer electrolyte fuel cells[J]. Electrochemistry, 2011, 79(5): 374-376. DOI:10.5796/electrochemistry.79.374. |
38 | HUNGRÍA A B, CALVINO J J, HERNÁNDEZ-GARRIDO J C. HAADF-STEM electron tomography in catalysis research[J]. Topics in Catalysis, 2019, 62(12): 808-821. DOI:10.1007/s11244-019-01200-2. |
39 | SNEED B T, CULLEN D A, REEVES K S, et al. 3D analysis of fuel cell electrocatalyst degradation on alternate carbon supports[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29839-29848. DOI:10.1021/acsami.7b09716. |
40 | SHOKHEN V, STRANDBERG L, SKOGLUNDH M, et al. Impact of accelerated stress tests on the cathodic catalytic layer in a proton exchange membrane (PEM) fuel cell studied by identical location scanning electron microscopy[J]. ACS Applied Energy Materials, 2022, 5(9): 11200-11212. DOI:10.1021/acsaem.2c01790. |
41 | CHENG L, KHEDEKAR K, REZAEI TALARPOSHTI M, et al. Mapping of heterogeneous catalyst degradation in polymer electrolyte fuel cells[J]. Advanced Energy Materials, 2020, 10(28): 2000623. DOI:10.1002/aenm.202000623. |
[1] | 张建茹, 王其钰, 李庆浩, 张献英, 王碧童, 禹习谦, 李泓. 锂离子电池失效分析中的几种物性表征技术及其应用[J]. 储能科学与技术, 2025, 14(1): 286-309. |
[2] | 许旭鹏, 许旭明, 陈虹艳, 梁雅儒, 雷维新, 马增胜, 陈国新, 柯培玲. 原位表征技术在锂硫电池机理研究中的应用[J]. 储能科学与技术, 2024, 13(4): 1239-1252. |
[3] | 曾其权, 罗马吉, 杨印龙, 黄庆泽. 基于LSTM-UPF混合驱动方法的燃料电池寿命预测[J]. 储能科学与技术, 2024, 13(3): 963-970. |
[4] | 白静, 范惠芳, 崔四齐, 许闯, 张毅, 关斯泽, 杨涵斐, 贾一飞, 耿树伟, 郑慧凡. 车用燃料电池散热性能实验研究[J]. 储能科学与技术, 2024, 13(2): 390-395. |
[5] | 范馨远, 刘永峰, 裴普成, 张璐. 气体扩散层内部交叉流动对PEMFC水跨膜输运影响分析[J]. 储能科学与技术, 2024, 13(11): 3772-3783. |
[6] | 贾铭勋, 吴桐, 杨道通, 秦小茜, 刘景海, 段莉梅. 锂硫电池电解液多功能添加剂:作用机制及先进表征[J]. 储能科学与技术, 2024, 13(1): 36-47. |
[7] | 金成滨, 黄益钰, 陶新永, 盛欧微. 金属锂电池死锂形成机制及解决策略[J]. 储能科学与技术, 2024, 13(1): 24-35. |
[8] | 张永辉, 傅杰, 李先锋, 张长昆. 原位表征技术在水系有机液流电池中的研究进展[J]. 储能科学与技术, 2023, 12(9): 2971-2984. |
[9] | 禹永帅, 刘永峰, 裴普成, 张璐, 姚圣卓. 阴极相对湿度对PEMFC电解质水含量及性能的影响[J]. 储能科学与技术, 2023, 12(6): 1755-1764. |
[10] | 王星, 孙俊, 陈宁芳, 闫立. 基于Simscape的质子交换膜燃料电池冷却系统建模与温度控制策略[J]. 储能科学与技术, 2023, 12(3): 857-869. |
[11] | 田禾青, 寇朝阳, 周俊杰, 余银生. LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟[J]. 储能科学与技术, 2023, 12(3): 654-660. |
[12] | 刘轲轲, 刘永峰, 裴普成, 姚圣卓, 张璐. 基于科赫曲线的PEMFC新型流道设计[J]. 储能科学与技术, 2023, 12(11): 3361-3368. |
[13] | 胡冶州, 王双, 申涛, 朱叶, 王得丽. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. |
[14] | 安汉文, 莫生凯, 李梦璐, 王家钧. 同步辐射多模态成像技术在储能电池领域的研究进展[J]. 储能科学与技术, 2022, 11(3): 834-851. |
[15] | 吕思奇, 李娜, 陈浩森, 焦树强, 宋维力. 电池电极过程可视化与定量化技术的研究进展[J]. 储能科学与技术, 2022, 11(3): 795-817. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||