1 |
尹杰, 刘博, 孙国兵, 等. 基于迁移学习和降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(1): 289-302. DOI: 10.19595/j.cnki.1000-6753.tces.221890.
|
|
YIN J, LIU B, SUN G B, et al. Transfer learning denoising autoencoder-long short term memory for remaining useful life prediction of Li-ion batteries[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 289-302. DOI: 10.19595/j.cnki.1000-6753.tces.221890.
|
2 |
黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. DOI: 10.19595/j.cnki.1000-6753.tces.210860.
|
|
HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. DOI: 10.19595/j.cnki.1000-6753.tces.210860.
|
3 |
李英顺, 阚宏达, 郭占男, 等. 基于数据预处理和VMD-LSTM-GPR的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(10): 3244-3258. DOI: 10.19595/j.cnki.1000-6753.tces.230210.
|
|
LI Y S, KAN H D, GUO Z N, et al. Prediction of remaining useful life of lithium-ion battery based on data preprocessing and VMD-LSTM-GPR[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 3244-3258. DOI: 10.19595/j.cnki.1000-6753.tces.230210.
|
4 |
FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101741. DOI:10.1016/j.est.2020.101741.
|
5 |
TANG A H, HUANG Y K, XU Y C, et al. Data-physics-driven estimation of battery state of charge and capacity[J]. Energy, 2024, 294: 130776. DOI:10.1016/j.energy.2024.130776.
|
6 |
SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346. DOI:10.1016/j.apenergy.2021.117346.
|
7 |
REN Z, DU C Q. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries[J]. Energy Reports, 2023, 9: 2993-3021. DOI:10.1016/j.egyr.2023.01.108.
|
8 |
VILSEN S B, STROE D I. Battery state-of-health modelling by multiple linear regression[J]. Journal of Cleaner Production, 2021, 290: 125700. DOI:10.1016/j.jclepro.2020.125700.
|
9 |
SUI X, HE S, MENG J H, et al. Fuzzy entropy-based state of health estimation for Li-ion batteries[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 5125-5137. DOI:10.1109/JESTPE.2020.3047004.
|
10 |
LIN M Q, WU D G, MENG J H, et al. A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries[J]. Journal of Power Sources, 2022, 518: 230774. DOI:10.1016/j.jpowsour.2021.230774.
|
11 |
TAO J, WANG S, CAO W, et al. A comprehensive review of multiple physical and data-driven model fusion methods for accurate lithium-ion battery inner state factor estimation[J]. Batteries, 2024, 10(12): 442.
|
12 |
HU X S, CHE Y H, LIN X K, et al. Health prognosis for electric vehicle battery packs: A data-driven approach[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2622-2632. DOI:10.1109/TMECH.2020.2986364.
|
13 |
WU J, LIU X T, MENG J H, et al. Cloud-to-edge based state of health estimation method for Lithium-ion battery in distributed energy storage system[J]. Journal of Energy Storage, 2021, 41: 102974. DOI:10.1016/j.est.2021.102974.
|
14 |
MA Y, SHAN C, GAO J W, et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J]. Energy, 2022, 251: 123973. DOI:10.1016/j.energy.2022.123973.
|
15 |
TANG A, JIANG Y, YU Q, et al. A hybrid neural network model with attention mechanism for state of health estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 68: 107734.
|
16 |
HU J, WENG L L, GAO Z W, et al. State of health estimation and remaining useful life prediction of electric vehicles based on real-world driving and charging data[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 382-394. DOI:10.1109/TVT.2022.3203013.
|
17 |
ZHOU K Q, QIN Y, YUEN C. Transfer-learning-based state-of-health estimation for lithium-ion battery with cycle synchronization[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 692-702. DOI:10.1109/TMECH.2022.3201010.
|
18 |
SHEN S, SADOUGHI M, CHEN X Y, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019, 25: 100817. DOI:10.1016/j.est.2019.100817.
|
19 |
YANG N K, SONG Z Y, HOFMANN H, et al. Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest[J]. Journal of Energy Storage, 2022, 48: 103857. DOI:10.1016/j.est.2021.103857.
|
20 |
WANG S L, TAKYI-ANINAKWA P, JIN S Y, et al. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation[J]. Energy, 2022, 254: 124224. DOI:10.1016/j.energy.2022.124224.
|
21 |
WANG S L, GAO H Y, TAKYI-ANINAKWA P, et al. Improved multiple feature-electrochemical thermal coupling modeling of lithium-ion batteries at low-temperature with real-time coefficient correction[J]. Protection and Control of Modern Power Systems, 2024, 9(3): 157-173. DOI:10.23919/PCMP.2023.000257.
|
22 |
SHEN S Q, LIU B C, ZHANG K, et al. Toward fast and accurate SOH prediction for lithium-ion batteries[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 2036-2046. DOI:10.1109/TEC.2021.3052504.
|
23 |
SU L Z, XU Y, DONG Z Y. State-of-health estimation of lithium-ion batteries: A comprehensive literature review from cell to pack levels[J]. Energy Conversion and Economics, 2024, 5(4): 224-242. DOI:10.1049/enc2.12125.
|
24 |
ZHANG M, YIN J, CHEN W L. SOH estimation and RUL prediction of lithium batteries based on multidomain feature fusion and CatBoost model[J]. Energy Science & Engineering, 2023, 11(9): 3082-3101. DOI:10.1002/ese3.1506.
|
25 |
HUANG H Y, MENG J H, WANG Y H, et al. A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve[J]. Applied Energy, 2022, 322: 119469. DOI:10.1016/j.apenergy.2022.119469.
|
26 |
SHU X, SHEN J W, LI G, et al. A flexible state-of-health prediction scheme for lithium-ion battery packs with long short-term memory network and transfer learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2238-2248. DOI:10.1109/TTE.2021.3074638.
|
27 |
ZHU J G, WANG Y X, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13(1): 2261. DOI:10.1038/s41467-022-29837-w.
|
28 |
ZHU X F, WANG W, ZOU G P, et al. State of health estimation of lithium-ion battery by removing model redundancy through aging mechanism[J]. Journal of Energy Storage, 2022, 52: 105018. DOI:10.1016/j.est.2022.105018.
|
29 |
YANG J F, XIA B, HUANG W X, et al. Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J]. Applied Energy, 2018, 212: 1589-1600. DOI:10.1016/j.apenergy.2018.01.010.
|
30 |
ZHANG S W, ZHU H P, WU J, et al. Voltage relaxation-based state-of-health estimation of lithium-ion batteries using convolutional neural networks and transfer learning[J]. Journal of Energy Storage, 2023, 73: 108579. DOI:10.1016/j.est. 2023.108579.
|
31 |
ZHAO G X, SUN X, XU J J, et al. MUSE: Parallel multi-scale attention for sequence to sequence learning[EB/OL]. 2019: 1911.09483. https://arxiv.org/abs/1911.09483v1
|