储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 654-660.doi: 10.19799/j.cnki.2095-4239.2022.0683

• 储能材料与器件 • 上一篇    下一篇

LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟

田禾青(), 寇朝阳, 周俊杰, 余银生()   

  1. 郑州大学机械与动力工程学院,河南 郑州 450001
  • 收稿日期:2022-11-18 修回日期:2022-12-02 出版日期:2023-03-05 发布日期:2023-04-14
  • 通讯作者: 余银生 E-mail:tianhq@zzu.edu.cn;yinshengyu@zzu.edu.cn
  • 作者简介:田禾青(1987—),男,博士,讲师,研究方向为相变储热材料,E-mail:tianhq@zzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51906228);河南省博士后基金(202103007)

Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids

Heqing TIAN(), Zhaoyang KOU, Junjie ZHOU, Yinsheng YU()   

  1. School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2022-11-18 Revised:2022-12-02 Online:2023-03-05 Published:2023-04-14
  • Contact: Yinsheng YU E-mail:tianhq@zzu.edu.cn;yinshengyu@zzu.edu.cn

摘要:

采用分子动力学方法研究了Al2O3纳米颗粒对二元氯化物熔盐LiCl-KCl结构和热物理性能的影响,分析了熔盐纳米流体(Nanofluids,NF)的径向分布函数、配位数N(r)、自扩散系数D、密度、黏度和热导率随纳米颗粒掺杂量和温度的变化规律。结果表明,在700~1400 K温度范围内,随着纳米颗粒掺杂量的增加,径向分布函数gLi-Cl(r)的第一峰位置逐渐向左移动,且峰高增加,配位数逐渐增大,自扩散系数逐渐减小。熔盐纳米流体的密度、黏度和热导率随温度的升高而降低,随纳米颗粒掺杂量的增加而增加,黏度和热导率最大分别提高了16.83%和4.95%。热物性的变化归因于Al2O3纳米颗粒的加入减小了纳米流体中阴阳离子间的距离,增强了缔合作用,使得熔体结构更加致密。

关键词: 熔盐, Al2O3, 微观结构, 热物性, 分子动力学

Abstract:

Herein, the molecular dynamics method investigates the effects of Al2O3 nanoparticles on the structure and thermophysical properties of binary chloride salt LiCl-KCl. Furthermore, the effect of doping amount and temperature on radial distribution function, coordination number [N(r)], self-diffusion coefficient(D), density, viscosity, and thermal conductivity of nanofluids were analyzed. The results show that in the temperature range of 700~1400 K, with increasing nanoparticles, the first peak position of the radial distribution function gLi-Cl(r) moves to the left gradually, the peak height and the coordination number increase, and the self-diffusion coefficient decreases gradually. The density, viscosity, and thermal conductivity of nanofluids decreased with increasing temperature but increased with increasing nanoparticles, and the maximum viscosity and thermal conductivity increased by 16.83% and 4.95%, respectively. The change in thermophysical properties was attributed to adding Al2O3 nanoparticles that reduced the distance between anions in the nanofluids, enhancing the association effect, and making the melt structure more compact.

Key words: molten salt, Al2O3, microstructure, thermophysical property, molecular dynamics

中图分类号: