1 |
GUDE V G. Energy storage for desalination processes powered by renewable energy and waste heat sources[J]. Applied Energy, 2015, 137: 877-898.
|
2 |
MAHDI J M, NSOFOR E C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Applied Energy, 2018, 211: 975-986.
|
3 |
SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345.
|
4 |
SAID M A, HASSAN H. Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit[J]. Energy Conversion and Management, 2018, 171: 903-916.
|
5 |
李昭, 李宝让, 崔柳, 等. 高温熔盐基纳米流体热物性的稳定性研究[J]. 储能科学与技术, 2020, 9(6): 1775-1783.
|
|
LI Z, LI B R, CUI L, et al. Stability of the thermal performances of molten salt-based nanofluid[J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783.
|
6 |
WEI X L, YIN Y, QIN B, et al. Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity[J]. Renewable Energy, 2020, 145: 2435-2444.
|
7 |
HAN D M, GUENE LOUGOU B, XU Y T, et al. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage[J]. Applied Energy, 2020, 264: doi: 10.1016/j.apenergy.2020.114674.
|
8 |
HAN D M, LOUGOU B G, SHUAI Y, et al. Study of thermophysical properties of chloride salts doped with CuO nanoparticles for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 234: doi: 10.1016/j.solmat.2021.111432.
|
9 |
CHEN X, WU Y T, ZHANG L D, et al. Experimental study on thermophysical properties of molten salt nanofluids prepared by high-temperature melting[J]. Solar Energy Materials and Solar Cells, 2019, 191: 209-217.
|
10 |
YU Y S, ZHAO C Y, TAO Y B, et al. Superior thermal energy storage performance of NaCl-SWCNT composite phase change materials: A molecular dynamics approach[J]. Applied Energy, 2021, 290: doi: 10.1016/j.apenergy.2021.116799.
|
11 |
XIAN L, CHEN L, TIAN H Q, et al. Enhanced thermal energy storage performance of molten salt for the next generation concentrated solar power plants by SiO2 nanoparticles: A molecular dynamics study[J]. Applied Energy, 2022, 323: doi: 10.1016/j.apenergy.2022.119555.
|
12 |
PAN G C, DING J, WANG W L, et al. Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 103: 417-427.
|
13 |
FUMI F G, TOSI M P. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I[J]. Journal of Physics and Chemistry of Solids, 1964, 25(1): 31-43.
|
14 |
姜涛, 王宁, 程长明, 等. LiCl-KCl-CeCl3熔盐结构与热力学的分子动力学模拟[J]. 物理化学学报, 2016, 32(3): 647-655.
|
|
JIANG T, WANG N, CHENG C M, et al. Molecular dynamics simulation on the structure and thermodynamics of molten LiCl-KCl-CeCl3[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 647-655.
|
15 |
CACCAMO C, DIXON M. Molten alkali-halide mixtures: A molecular-dynamics study of Li/KCl mixtures[J]. Journal of Physics C: Solid State Physics, 1980, 13(10): 1887-1900.
|
16 |
LARSEN B, FØRLAND T, SINGER K. A Monte Carlo calculation of thermodynamic properties for the liquid NaCl+KCl mixture[J]. Molecular Physics, 1973, 26(6): 1521-1532.
|
17 |
ZHOU W N, YANG Z X, FENG Y H, et al. Insights into the thermophysical properties and heat conduction enhancement of NaCl-Al2O3 composite phase change material by molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2022, 198: doi: 10.1016/j.ijheatmasstransfer.2022.123422.
|
18 |
XIE W J, DING J, PAN G, et al. Heat and mass transportation properties of binary chloride salt as a high-temperature heat storage and transfer media[J]. Solar Energy Materials and Solar Cells, 2020, 209: doi: 10.1016/j.solmat.2020.110415.
|
19 |
MÜLLER-PLATHE F, BORDAT P. Reverse non-equilibrium molecular dynamics[M]//Novel methods in soft matter simulations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 310-326.
|
20 |
CUI W Z, SHEN Z J, YANG J G, et al. Molecular dynamics simulation on the microstructure of absorption layer at the liquid-solid interface in nanofluids[J]. International Communications in Heat and Mass Transfer, 2016, 71: 75-85.
|
21 |
LI Z, CUI L, LI B R, et al. Enhanced heat conduction in molten salt containing nanoparticles: Insights from molecular dynamics[J]. International Journal of Heat and Mass Transfer, 2020, 153: doi: 10.1016/j.ijheatmasstransfer.2020.119578.
|
22 |
SARKAR S, SELVAM R P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids[J]. Journal of Applied Physics, 2007, 102(7): doi: 10.1063/1.2785009.
|
23 |
WILLIAMS D F, TOTH L M, CLARNO K T. Assessment of candidate molten salt coolants for the advanced high-temperature reactor[R]. Tennessee: Oak Ridge National Laboratory, 2006.
|
24 |
VAN ARTSDALEN E R, YAFFE I S. Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI[J]. The Journal of Physical Chemistry, 1955, 59(2): 118-127.
|
25 |
王佳, 孙泽, 路贵民, 等. 碱金属氯化物二元熔盐密度的分子动力学模拟研究[J]. 华东理工大学学报(自然科学版), 2016, 42(6): 771-781.
|
|
WANG J, SUN Z, LU G M, et al. Molecular dynamics simulation for the densities of molten binary alkali metal chlorides[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(6): 771-781.
|
26 |
YU Y S, TAO Y B, ZHAO C Y, et al. Thermal storage performance enhancement and regulation mechanism of KNO3-SWCNT based composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2021, 181: doi: 10.1016/j.ijheatmasstransfer.2021.121870.
|
27 |
ZHANG J, FULLER J, AN Q. Coordination and thermophysical properties of transition metal chloro complexes in LiCl-KCl eutectic[J]. The Journal of Physical Chemistry B, 2021, 125(31): 8876-8887.
|