1 |
KO G, JEONG S, PARK S, et al. Doping strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries[J]. Energy Storage Materials, 2023, 60: 102840. DOI:10.1016/j.ensm.2023.102840.
|
2 |
FAN Y M, ZHANG W C, ZHAO Y L, et al. Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure[J]. Energy Storage Materials, 2021, 40: 51-71. DOI:10.1016/j.ensm. 2021.05.005.
|
3 |
LI Q Y, NING D, WONG D, et al. Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy[J]. Nature Communications, 2022, 13(1): 1123. DOI:10.1038/s41467-022-28793-9.
|
4 |
TANG W H, ZHU J P, CHEN C, et al. Modification strategies and challenges of high-performance lithium-rich manganese-based cathode materials[J]. Energy Technology, 2024, 12(4): 2301254. DOI:10.1002/ente.202301254.
|
5 |
YANG P H, ZHANG S C, WEI Z W, et al. A gradient doping strategy toward superior electrochemical performance for Li-rich Mn-based cathode materials[J]. Small, 2023, 19(20): 2207797. DOI:10.1002/smll.202207797.
|
6 |
ZE P F, BAO Q, ZHAO P L. Progress of "reversible high-oxygen activity" of lithium-rich layered oxide anode materials[J]. Energy Storage Science and Technology, 2024, 13(1):240-251.
|
7 |
CELESTE A, GIRARDI F, GIGLI L, et al. Impact of Overlithiation and Al doping on the battery performance of Li-rich layered oxide materials[J]. Electrochimica Acta, 2022, 428: 140737. DOI:10. 1016/j.electacta.2022.140737.
|
8 |
LIN Y, LI Y, TANG M L, et al. A review of high-capacity lithium-rich manganese-based cathode materials for a new generation of lithium batteries[J]. Inorganica Chimica Acta, 2024, 572: 122239. DOI:10.1016/j.ica.2024.122239.
|
9 |
LAISA C P, RAMESHA R N, RAMESHA K. Enhanced electrochemical performance of lithium rich layered cathode materials by Ca2+ substitution[J]. Electrochimica Acta, 2017, 256: 10-18. DOI:10.1016/j.electacta.2017.10.029.
|
10 |
DONG S D, ZHOU Y, HAI C X, et al. Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials[J]. Journal of Power Sources, 2020, 462: 228185. DOI:10.1016/j.jpowsour. 2020.228185.
|
11 |
ZHANG Z H, DING X K, LUO D, et al. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials[J]. Energy Storage Science and Technology, 2021, 10(2):408-424.
|
12 |
QIU H R, ZHANG R, ZHANG Y X. Na+ lattice doping induces oxygen vacancies to achieve high capacity and mitigate voltage decay of Li-rich cathodes[J]. International Journal of Molecular Sciences, 2023, 24(9): 8035. DOI:10.3390/ijms24098035.
|
13 |
CHOI A, LIM J, KIM H, et al. In situ electrochemical Zn2+-doping for Mn-rich layered oxides in Li-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(5): 3427-3434. DOI:10.1021/acsaem. 9b00241.
|
14 |
MAKHONINA E, PECHEN L, MEDVEDEVA A, et al. Effects of Mg doping at different positions in Li-rich Mn-based cathode material on electrochemical performance[J]. Nanomaterials, 2022, 12(1): 156. DOI:10.3390/nano12010156.
|
15 |
SEABY T, LIN T E, HU Y X, et al. An analysis of F-doping in Li-rich cathodes[J]. Rare Metals, 2022, 41(6): 1771-1796. DOI:10.1007/s12598-021-01883-1.
|
16 |
WANG E R, XIAO D D, WU T H, et al. Al/Ti synergistic doping enhanced cycle stability of Li-rich layered oxides[J]. Advanced Functional Materials, 2022, 32(26): 2201744. DOI:10.1002/adfm. 202201744.
|
17 |
RAMESHA R N, LAISA C P, RAMESHA K. Improving electrochemical stability by transition metal cation doping for manganese in lithium-rich layered cathode, Li1.2Ni0.13Co0.13Mn0.54- xMxO2 (M=Co, Cr and Fe)[J]. Electrochimica Acta, 2017, 249: 377-386. DOI:10.1016/j.electacta. 2017.08.039.
|
18 |
HE Z J, WANG Z X, CHENG L, et al. Structural and electrochemical characterization of layered 0.3Li2MnO3·0.7LiMn0.35 -x/3Ni0.5- x/3Co0.15- x/3CrxO2 cathode synthesized by spray drying[J]. Advanced Powder Technology, 2014, 25(2): 647-653. DOI:10.1016/j.apt. 2013.10.008.
|
19 |
YUAN X L, XU Q J, LIU X N, et al. Excellent rate performance and high capacity of Mo doped layered cathode material Li [Li0.2Mn0.54Ni0.13Co0.13] O2 derived from an improved coprecipitation approach[J]. Electrochimica Acta, 2016, 207: 120-129. DOI:10. 1016/j.electacta.2016.04.180.
|
20 |
YU H J, SO Y G, KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Letters, 2016, 16(5): 2907-2915. DOI:10.1021/acs.nanolett.5b03933.
|
21 |
AN J, SHI L Y, CHEN G R, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(37): 19738-19744. DOI:10.1039/c7ta05971j.
|
22 |
MA Q X, YANG M Q, MENG J X, et al. Interfacial-engineering-enabled high-performance Li-rich cathodes[J]. Chemical Engineering Journal, 2024, 485: 149546. DOI:10.1016/j.cej. 2024.149546.
|
23 |
LU Y, SHI S L, YANG F, et al. Mo-doping for improving the ZrF4 coated-Li[Li0.20Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 767: 23-33. DOI:10.1016/j.jallcom. 2018. 07.068.
|
24 |
YU Z Z, LU Q, WANG Y Z, et al. Self-compacting engineering to achieve high-performance lithium-rich layered oxides cathode materials[J]. Applied Surface Science, 2023, 619: 156683. DOI:10.1016/j.apsusc.2023.156683.
|
25 |
FANG Y Y, SU Y F, DONG J Y, et al. Boosting rate performance of layered lithium-rich cathode materials by oxygen vacancy induced surface multicomponent integration[J]. Journal of Energy Chemistry, 2024, 92: 250-262. DOI:10.1016/j.jechem. 2023. 12.050.
|
26 |
LI Q Y, ZHOU D, ZHANG L J, et al. Tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy[J]. Advanced Functional Materials, 2019, 29(10): 1806706. DOI:10.1002/adfm.201806706.
|
27 |
WEN Z Y, RONG Z W, YIN Y J, et al. N-doped carbon coated SnO2 nanospheres as Li-ion battery anode with high capacity and good cycling stability[J]. Journal of Electroanalytical Chemistry, 2021, 899: 115694. DOI:10.1016/j.jelechem.2021.115694.
|
28 |
ZHANG J, LEI Z H, WANG J L, et al. Surface modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(29): 15821-15829. DOI:10.1021/acsami.5b02937.
|
29 |
WANG B, CUI J, LI Z J, et al. Review on comprehending and enhancing the initial coulombic efficiency of Li-rich Mn-based cathode materials in lithium-ion batteries[J]. Materials Chemistry Frontiers, 2023, 7(13): 2570-2594. DOI:10.1039/D3QM00064H.
|