储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 930-946.doi: 10.19799/j.cnki.2095-4239.2024.1196
收稿日期:
2024-12-17
修回日期:
2025-01-02
出版日期:
2025-03-28
发布日期:
2025-04-28
通讯作者:
蒋江民,鞠治成
E-mail:ts23180056a31@cumt.edu.cn;jmjiang326@cumt.edu.cn;juzc@cumt.edu.cn
作者简介:
许陈程(2001—),男,硕士研究生,主要研究方向为锂离子电池预锂化技术,E-mail:ts23180056a31@cumt.edu.cn;
基金资助:
Chencheng XU(), Zhan WANG, Shuang LI, Jiangmin JIANG(
), Zhicheng JU(
)
Received:
2024-12-17
Revised:
2025-01-02
Online:
2025-03-28
Published:
2025-04-28
Contact:
Jiangmin JIANG, Zhicheng JU
E-mail:ts23180056a31@cumt.edu.cn;jmjiang326@cumt.edu.cn;juzc@cumt.edu.cn
摘要:
锂离子电池因其高能量密度和长循环寿命成为广泛使用的储能器件之一。然而,在初始循环过程中,固体电解质界面的形成以及一些不可逆副反应的发生需要消耗部分活性锂,导致初始库仑效率降低,整体电化学性能不佳。因此,需要开发出一种补锂策略来改善这一问题,而预锂化技术被认为是当前解决这一问题的最有效策略之一。本文通过调研相关文献,首先从固体电解质界面膜的形成以及不可逆反应的发生两个角度出发阐明了锂离子电池初始容量损失机理。其次,重点对现有的各种预锂化策略进行了系统分类和总结,对于负极预锂化技术,主要介绍了化学预锂化、负极富锂添加剂以及电化学预锂化等策略;对于正极预锂化技术,主要介绍了过锂化正极材料以及正极预锂化添加剂两种策略。最后,本文还探讨了预锂化技术当前所面临的瓶颈,并为各种预锂化策略提出了后续的改进建议,展望了预锂化技术在大规模实际应用中的潜力,旨在为锂离子电池先进预锂化技术的开发及应用提供有价值的参考。
中图分类号:
许陈程, 王湛, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望[J]. 储能科学与技术, 2025, 14(3): 930-946.
Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 930-946.
表1
负极预锂化策略应用在各电池体系的性能总结"
预锂化体系 | 电池体系 | 预锂化后ICE/% | 容量保持率/% | 参考文献 |
---|---|---|---|---|
Li-Ph/2-MeTHF | 石墨||Li | 102 | 94.89(200圈) | [ |
Li-BP/2-MeTHF | 石墨||Li | 98.81 | 102.8(200圈) | [ |
4 BP/2-MeTHF | SiO/C||Li | 100.6 | — | [ |
Li-FBp-MeTHF | SiO2||Li | 101.7 | 75.4(300圈) | [ |
4,4′-DMBP-Li/DME(HFPN) | μSiO||Li | 99.57 | 90.67(350圈) | [ |
4,4′-DMBP-Li/THF(SbF3) | SiO x ||Li(Ni0.8Co0.1Mn0.1)O2 | 86.0 | 86.6(100圈) | [ |
金属锂直接接触 | SiO x ||NCM622 | 87.0 | 74 (200圈) | [ |
卷对卷机械法 | Na3V2(PO4)2F3(NVPF)||Na-Sn合金 | 75.0 | — | [ |
卷对卷机械法 | LFP||Li x Sn | 94.0 | 94.5 (200圈) | [ |
SLMP | Si-CNT||Li | 79 | — | [ |
锂合金化合物Li x Si-Li2O | Si||Li、石墨||Li | 94~100 | — | [ |
复合材料Li x Ge/Li2O | 石墨||Li | 100.6 | — | [ |
外部短路 | NCA||c-SiO x | 85.34 | 61(100圈) | [ |
垂直预掺杂 | 石墨||Li | 接近100 | — | [ |
表2
正极预锂化策略应用在各电池体系的性能总结"
预锂化体系 | 容量/(mAh/g) | 电池体系 | 预锂化后容量提升/% | 参考文献 |
---|---|---|---|---|
LFO | 867 | 7%LFO@LiCoO2||HC | 14 | [ |
LCO@LFO | 736.6 | NCM with 5% LCO@LFO)||石墨 | 8.8 | [ |
Li2S/KB/PVP | 1053 | Li2S/KB/PVP||石墨 | 16.7 | [ |
Li3P@rGO | 1547.61 | LiFePO4(2.5%Li3P@rGO)||石墨 | 10.2 | [ |
M/Li2O(M=Co,Ni,Fe) | 800 | LiFePO4with 4.8% Co/Li2O||石墨 | 11 | [ |
Li1+x Ni0.5Mn1.5O4 | 220.5 | Li1+x Ni0.5Mn1.5O4||石墨 | 4 | [ |
CS-LiCoO2 | 155 | CS-LiCoO2/石墨-SiO | 11 | [ |
LR-Ni65 | 220 | LR-Ni65||Si/石墨 | 11.5 | [ |
1 | AI G, WANG Z H, ZHAO H, et al. Scalable process for application of stabilized lithium metal powder in Li-ion batteries[J]. Journal of Power Sources, 2016, 309: 33-41. DOI: 10.1016/j.jpowsour. 2016.01.061. |
2 | 申菲. 锂离子电池安全性及预警措施研究[J]. 储能科学与技术, 2024, 13(10): 3515-3517. DOI: 10.19799/j.cnki.2095-4239. 2024.0929. |
SHEN F. Research on the safety and early warning measures of the lithium-ion battery[J]. Energy Storage Science and Technology, 2024, 13(10): 3515-3517. DOI: 10.19799/j.cnki.2095-4239.2024.0929. | |
3 | ARAVINDAN V, LEE Y S, MADHAVI S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes[J]. Advanced Energy Materials, 2015, 5(13): 1402225. DOI: 10.1002/aenm.201402225. |
4 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a. |
5 | XIAO C M, HE P, REN J G, et al. Walnut-structure Si-G/C materials with high coulombic efficiency for long-life lithium ion batteries[J]. RSC Advances, 2018, 8(48): 27580-27586. DOI: 10.1039/c8ra04804e. |
6 | HOELTGEN C, LEE J E, JANG B Y. Stepwise carbon growth on Si/SiOx core-shell nanoparticles and its effects on the microstructures anzd electrochemical properties for high-performance lithium-ion battery's anode[J]. Electrochimica Acta, 2016, 222: 535-542. DOI: 10.1016/j.electacta.2016.11.006. |
7 | HUANG G, HAN J H, LU Z, et al. Ultrastable silicon anode by three-dimensional nanoarchitecture design[J]. ACS Nano, 2020, 14(4): 4374-4382. DOI: 10.1021/acsnano.9b09928. |
8 | JANG J, KIM H, LIM H, et al. Surfactant-based selective assembly approach for Si-embedded silicon oxycarbide composite materials in lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 401: 126091. DOI: 10.1016/j.cej. 2020.126091. |
9 | WANG L B, LIN N, ZHOU J B, et al. Silicon nanoparticles obtained via a low temperature chemical "metathesis" synthesis route and their lithium-ion battery properties[J]. Chemical Communications, 2015, 51(12): 2345-2348. DOI: 10.1039/C4CC09233C. |
10 | WU Z L, JI S B, LIU L K, et al. High-performance SiO/C as anode materials for lithium-ion batteries using commercial SiO and glucose as raw materials[J]. Rare Metals, 2021, 40(5): 1110-1117. DOI: 10.1007/s12598-020-01445-x. |
11 | XIAO Z X, YU C H, LIN X Q, et al. Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material[J]. Carbon, 2019, 149: 462-470. DOI: 10.1016/j.carbon.2019.04.051. |
12 | YU C H, CHEN X, XIAO Z X, et al. Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions[J]. Nano Letters, 2019, 19(8): 5124-5132. DOI: 10.1021/acs.nanolett.9b01492. |
13 | ZHANG H, LIU S W, YU X F, et al. Improving rate capacity and cycling stability of Si-anode lithium ion battery by using copper nanowire as conductive additive[J]. Journal of Alloys and Compounds, 2020, 822: 153664. DOI: 10.1016/j.jallcom. 2020.153664. |
14 | ZHANG J Y, HOU Z L, ZHANG X M, et al. Si@Cu composite anode material prepared by magnetron sputtering for high-capacity lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4766-4771. DOI: 10.1016/j.ijhydene.2021.11.080. |
15 | 张策, 李思吾, 谢佳. 合金型负极预锂化技术研究进展[J]. 储能科学与技术, 2022, 11(5): 1383-1400. DOI: 10.19799/j.cnki.2095-4239.2021.0570. |
ZHANG C, LI S W, XIE J. Research progress on the prelithiation technology of alloy-type anodes[J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. DOI: 10.19799/j.cnki.2095-4239.2021.0570. | |
16 | 梅悦旎, 屈雯洁, 程广玉, 等. 锂离子电池正极补锂技术研究进展[J]. 储能科学与技术, 2025, 14(1): 77-89. DOI: 10.19799/j.cnki.2095-4239.2024.0767. |
MEI Y N, QU W J, CHENG G Y, et al. Lithium ion battery anode lithium supplement technology research progress[J]. Energy Storage Science and Technology, 2025, 14(1): 77-89. DOI: 10.19799/j.cnki.2095-4239.2024.0767. | |
17 | 聂平, 徐桂银, 蒋江民, 等. 预锂化技术及其在高比能硅负极中的应用[J]. 储能科学与技术, 2017, 6(5): 889-903. DOI: 10.12028/j.issn.2095-4239.2017.0088. |
NIE P, XU G Y, JIANG J M, et al. Prelithiation technologies and application in high energy silicon anodes[J]. Energy Storage Science and Technology, 2017, 6(5): 889-903. DOI: 10.12028/j.issn.2095-4239.2017.0088. | |
18 | 明海, 明军, 邱景义, 等. 预锂化技术在能源存储中的应用[J]. 储能科学与技术, 2017, 6(2): 223-236. DOI: 10.12028/2095-4239.2016.0096. |
MING H, MING J, QIU J Y, et al. Applications of pre-lithiation technologies in energy storage[J]. Energy Storage Science and Technology, 2017, 6(2): 223-236. DOI: 10.12028/2095-4239.2016.0096. | |
19 | MU T S, ZUO P J, LOU S F, et al. A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries[J]. Chemical Engineering Journal, 2018, 341: 37-46. DOI: 10.1016/j.cej.2018.02.026. |
20 | ZHANG H Q, CHENG J, LIU H B, et al. Prelithiation: A critical strategy towards practical application of high-energy-density batteries[J]. Advanced Energy Materials, 2023, 13(27): 2300466. DOI: 10.1002/aenm.202300466. |
21 | MORI S, ASAHINA H, SUZUKI H, et al. Chemical properties of various organic electrolytes for lithium rechargeable batteries 1. Characterization of passivating layer formed on graphite in alkyl carbonate solutions[J]. Journal of Power Sources, 1997, 68(1): 59-64. DOI: 10.1016/S0378-7753(97)02619-0. |
22 | YANG G J, LI Y J, LIU S, et al. LiFSI to improve lithium deposition in carbonate electrolyte[J]. Energy Storage Materials, 2019, 23: 350-357. DOI: 10.1016/j.ensm.2019.04.041. |
23 | HE X W, MU X W, WANG Y G, et al. Fast and scalable complete chemical prelithiation strategy for Si/C anodes enabling high-performance LixSi-S full cells[J]. ACS Applied Energy Materials, 2023, 6(12): 6790-6796. DOI: 10.1021/acsaem.3c00980. |
24 | LI S, JIANG J M, FENG Q L, et al. Molecular engineering chemical pre-lithiation reagent with low redox potential for graphite anode enables high coulombic efficiency[J]. Small, 2024, 20(51): e2406274. DOI: 10.1002/smll.202406274. |
25 | MA C S, WANG B, ZHANG T R, et al. Preparation and controllable prelithiation of core-shell SnOx@C composites for high-performance lithium-ion batteries[J]. CrystEngComm, 2022, 24(17): 3189-3198. DOI: 10.1039/d1ce01588e. |
26 | SHEN Y F, QIAN J F, YANG H X, et al. Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries[J]. Small, 2020, 16(7): e1907602. DOI: 10.1002/smll.201907602. |
27 | WANG G W, LI F F, LIU D, et al. Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 8699-8703. DOI: 10.1021/acsami.8b19416. |
28 | YOSHIDA S, MASUO Y T, SHIBATA D, et al. Li pre-doping of amorphous silicon electrode in Li-naphthalene complex solutions[J]. Electrochemistry, 2015, 83(10): 843-845. DOI: 10.5796/electrochemistry.83.843. |
29 | SCOTT M G, WHITEHEAD A H, OWEN J R. Chemical formation of a solid electrolyte interface on the carbon electrode of a Li-ion cell[J]. Journal of the Electrochemical Society, 145(5): 1506-1510. DOI: 10.1149/1.1838511. |
30 | SHEN Y F, SHEN X H, YANG M, et al. Achieving desirable initial coulombic efficiencies and full capacity utilization of Li-ion batteries by chemical prelithiation of graphite anode[J]. Advanced Functional Materials, 2021, 31(24): 2101181. DOI: 10.1002/adfm.202101181. |
31 | JANG J, KANG I, CHOI J, et al. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angewandte Chemie International Edition, 2020, 59(34): 14473-14480. DOI: 10.1002/anie.202002411. |
32 | LI Y, QIAN Y, ZHAO Y, et al. Revealing the interface-rectifying functions of a Li-cyanonaphthalene prelithiation system for SiO electrode[J]. Science Bulletin, 2022, 67(6): 636-645. DOI: 10.1016/j.scib.2021.12.010. |
33 | HE W J, XU H, CHEN Z J, et al. Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries[J]. Nano-Micro Letters, 2023, 15(1): 107. DOI: 10.1007/s40820-023-01068-8. |
34 | LI Y, QIAN Y, DENG B W, et al. Prelithiation-coupled defluorination polymerization for constructing LiF-rich oligomers interface for highly stable SiO anode[J]. Chemical Engineering Journal, 2024, 488: 151012. DOI: 10.1016/j.cej.2024.151012. |
35 | MAN Q Y, SHEN H T, WEI C L, et al. Rational design of F,N-rich artificial interphase via chemical prelithiation initiation strategy enabling high coulombic efficiency and stable micro-sized SiO anodes[J]. Journal of Energy Chemistry, 2024, 92: 224-232. DOI: 10.1016/j.jechem.2024.01.046. |
36 | SUN Y, ZHANG K X, CHAI R, et al. In situ artificial hybrid SEI layer enabled high-performance prelithiated SiOx anode for lithium-ion batteries[J]. Advanced Functional Materials, 2023, 33(36): 2303020. DOI: 10.1002/adfm.202303020. |
37 | LI S, JIANG J M, ZHENG Y, et al. Pre-lithiation technology for rechargeable lithium-ion batteries: Principles, applications, and perspectives[J]. Batteries & Supercaps, 2024, 7(7): e202400115. DOI: 10.1002/batt.202400115. |
38 | LIU N, HU L B, MCDOWELL M T, et al. Prelithiated silicon nanowires as an anode for lithium ion batteries[J]. ACS Nano, 2011, 5(8): 6487-6493. DOI: 10.1021/nn2017167. |
39 | CAO Z Y, XU P Y, ZHAI H W, et al. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density[J]. Nano Letters, 2016, 16(11): 7235-7240. DOI: 10.1021/acs.nanolett.6b03655. |
40 | LIU W J, CHEN X L, ZHANG C, et al. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23207-23212. DOI: 10.1021/acsami.9b05005. |
41 | XU H, LI S, ZHANG C, et al. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries[J]. Energy & Environmental Science, 2019, 12(10): 2991-3000. DOI: 10.1039/C9EE01404G. |
42 | MENG Q H, LI G, YUE J P, et al. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32062-32068. DOI: 10.1021/acsami.9b12086. |
43 | BÄRMANN P, MOHRHARDT M, FRERICHS J E, et al. Mechanistic insights into the pre-lithiation of silicon/graphite negative electrodes in "dry state" and after electrolyte addition using passivated lithium metal powder[J]. Advanced Energy Materials, 2021, 11(25): 2100925. DOI: 10.1002/aenm.202100925. |
44 | FORNEY M W, GANTER M J, STAUB J W, et al. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP)[J]. Nano Letters, 2013, 13(9): 4158-4163. DOI: 10.1021/nl401776d. |
45 | HWANG S W, YOON W Y. Effect of Li powder-coated separator on irreversible behavior of SiOx-C anode in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(10): A1753-A1758. DOI: 10.1149/2.0031412jes. |
46 | JARVIS C R, LAIN M J, GAO Y, et al. A lithium ion cell containing a non-lithiated cathode[J]. Journal of Power Sources, 2005, 146(1/2): 331-334. DOI: 10.1016/j.jpowsour.2005.03.023. |
47 | LI X M, LI Y S, TANG Y F, et al. Air stable lithium microspheres prelithiation reagents for Li-ion batteries synthesized via electroplating[J]. Journal of Power Sources, 2021, 496: 229868. DOI: 10.1016/j.jpowsour.2021.229868. |
48 | LI Y X, FITCH B. Effective enhancement of lithium-ion battery performance using SLMP[J]. Electrochemistry Communications, 2011, 13(7): 664-667. DOI: 10.1016/j.elecom.2011.04.003. |
49 | PAN Q R, ZUO P J, MU T S, et al. Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder[J]. Journal of Power Sources, 2017, 347: 170-177. DOI: 10.1016/j.jpowsour. 2017.02.061. |
50 | SEONG I W, YOON W Y. Electrochemical behavior of a silicon monoxide and Li-powder double layer anode cell[J]. Journal of Power Sources, 2010, 195(18): 6143-6147. DOI: 10.1016/j.jpowsour.2010.01.065. |
51 | SUN Y N, GUAN H Y, JIANG Z H, et al. Study on prelithiation technology of hard carbon electrode using stable metal lithium powder[J]. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(2). DOI: 10.1115/1.4041980. |
52 | WANG L, FU Y B, BATTAGLIA V S, et al. SBR-PVDF based binder for the application of SLMP in graphite anodes[J]. RSC Advances, 2013, 3(35): 15022-15027. DOI: 10.1039/C3RA42773K. |
53 | WANG Z H, FU Y B, ZHANG Z C, et al. Application of stabilized lithium metal powder (SLMP®) in graphite anode—A high efficient prelithiation method for lithium-ion batteries[J]. Journal of Power Sources, 2014, 260: 57-61. DOI: 10.1016/j.jpowsour. 2014.02.112. |
54 | XIANG B, WANG L, LIU G, et al. Electromechanical probing of Li/Li2CO3 core/shell particles in a TEM[J]. Journal of the Electrochemical Society, 2013, 160(3): A415-A419. DOI: 10.1149/2.018303jes. |
55 | YERSAK T A, SON S B, CHO J S, et al. An all-solid-state Li-ion battery with a pre-lithiated Si-Ti-Ni alloy anode[J]. Journal of the Electrochemical Society, 2013, 160(9): A1497-A1501. DOI: 10.1149/2.086309jes. |
56 | ZHAO H, WANG Z H, LU P, et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design[J]. Nano Letters, 2014, 14(11): 6704-6710. DOI: 10.1021/nl503490h. |
57 | NGUYEN Q A, HARIDAS A K, TERLIER T, et al. Prelithiation effects in enhancing silicon-based anodes for full-cell lithium-ion batteries using stabilized lithium metal particles[J]. ACS Applied Energy Materials, 2023, 6(10): 5567-5579. DOI: 10.1021/acsaem.3c00713. |
58 | JANG E, RYU S, KIM M, et al. Silicon-stabilized lithium metal powder (SLMP) composite anodes for fast charging by in situ prelithiation[J]. Journal of Power Sources, 2023, 580: 233326. DOI: 10.1016/j.jpowsour.2023.233326. |
59 | ZHAO J, LU Z D, LIU N, et al. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents[J]. Nature Communications, 2014, 5: 5088. DOI: 10.1038/ncomms6088. |
60 | WANG C, HAN Y Y, LI S H, et al. Thermal lithiated-TiO2: A robust and electron-conducting protection layer for Li-Si alloy anode[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12750-12758. DOI: 10.1021/acsami.8b02150. |
61 | ZHAO J, SUN J, PEI A, et al. A general prelithiation approach for group Ⅳ elements and corresponding oxides[J]. Energy Storage Materials, 2018, 10: 275-281. DOI: 10.1016/j.ensm.2017.06.013. |
62 | ZHANG J, SHI Z Q, WANG C Y. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors[J]. Electrochimica Acta, 2014, 125: 22-28. DOI: 10.1016/j.electacta.2014.01.040. |
63 | DOMI Y, USUI H, IWANARI D, et al. Effect of mechanical pre-lithiation on electrochemical performance of silicon negative electrode for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1651-A1654. DOI: 10.1149/2.1361707jes. |
64 | KIM H J, CHOI S, LEE S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Letters, 2016, 16(1): 282-288. DOI: 10.1021/acs.nanolett.5b03776. |
65 | WATANABE T, TSUDA T, ANDO N, et al. An improved pre-lithiation of graphite anodes using through-holed cathode and anode electrodes in a laminated lithium ion battery[J]. Electrochimica Acta, 2019, 324: 134848. DOI: 10.1016/j.electacta. 2019.134848. |
66 | WU Y W, YOKOSHIMA T, NARA H, et al. A pre-lithiation method for sulfur cathode used for future lithium metal free full battery[J]. Journal of Power Sources, 2017, 342: 537-545. DOI: 10.1016/j.jpowsour.2016.12.101. |
67 | SU K, WANG Y, YANG B, et al. A review: Pre-lithiation strategies based on cathode sacrificial lithium salts for lithium-ion capacitors[J]. Energy & Environmental Materials, 2023, 6(6): e12506. DOI: 10.1002/eem2.12506. |
68 | GUO Y T, LI X H, WANG Z X, et al. Bifunctional Li6CoO4 serving as prelithiation reagent and pseudocapacitive electrode for lithium ion capacitors[J]. Journal of Energy Chemistry, 2020, 47: 38-45. DOI: 10.1016/j.jechem.2019.11.003. |
69 | CHEN L Y, CHIANG C L, ZENG G F, et al. Enhancing the cycle-life of initial-anode-free lithium-metal batteries by pre-lithiation in Mn-based Li-rich spinel cathodes[J]. Journal of Materials Chemistry A, 2023, 11(21): 11119-11125. DOI: 10.1039/D3TA01823G. |
70 | KULKARNI P, JUNG H, GHOSH D, et al. A comprehensive review of pre-lithiation/sodiation additives for Li-ion and Na-ion batteries[J]. Journal of Energy Chemistry, 2023, 76: 479-494. DOI: 10.1016/j.jechem.2022.10.001. |
71 | SU X, LIN C K, WANG X P, et al. A new strategy to mitigate the initial capacity loss of lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 150-157. DOI: 10.1016/j.jpowsour.2016.05.063. |
72 | LI J, ZHU B, LI S H, et al. Air-stable Li6CoO4@Li5FeO4 pre-lithiation reagent in cathode enabling high performance lithium-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(8): 080510. DOI: 10.1149/1945-7111/ac18e1. |
73 | LEE S W, KIM H K, KIM M S, et al. A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites[J]. Scientific Reports, 2017, 7: 46530. DOI: 10.1038/srep46530. |
74 | GOMEZ-MARTIN A, GNUTZMANN M M, ADHITAMA E, et al. Opportunities and challenges of Li2C4O4 as pre-lithiation additive for the positive electrode in NMC622||silicon/graphite lithium ion cells[J]. Advanced Science, 2022, 9(24): 2201742. DOI: 10.1002/advs.202201742. |
75 | HUANG G X, LIANG J N, ZHONG X G, et al. Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithium-ion batteries[J]. Nano Research, 2023, 16(3): 3872-3878. DOI: 10.1007/s12274-022-5146-0. |
76 | SHANMUKARAJ D, GRUGEON S, LARUELLE S, et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries[J]. Electrochemistry Communications, 2010, 12(10): 1344-1347. DOI: 10.1016/j.elecom.2010.07.016. |
77 | PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): 1502534. DOI: 10.1002/aenm.201502534. |
78 | BIE Y T, YANG J, WANG J L, et al. Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries[J]. Chemical Communications, 2017, 53(59): 8324-8327. DOI: 10.1039/c7cc04646d. |
79 | ZHAN Y J, YU H L, BEN L B, et al. Using Li2S to compensate for the loss of active lithium in Li-ion batteries[J]. Electrochimica Acta, 2017, 255: 212-219. DOI: 10.1016/j.electacta.2017.09.167. |
80 | WANG X Y, LIU C, ZHANG S J, et al. Dual-functional cathodic prelithiation reagent of Li3P in lithium-ion battery for compensating initial capacity loss and enhancing safety[J]. ACS Applied Energy Materials, 2021, 4(5): 5246-5254. DOI: 10.1021/acsaem.1c00773. |
81 | SUN Y M, LEE H W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1: 15008. DOI: 10.1038/nenergy.2015.8. |
82 | GABRIELLI G, MARINARO M, MANCINI M, et al. A new approach for compensating the irreversible capacity loss of high-energy Si/C|LiNi0.5Mn1.5O4 lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 35-44. DOI: 10.1016/j.jpowsour. 2017.03.051. |
83 | LIU X X, TAN Y C, WANG W Y, et al. Conformal prelithiation nanoshell on LiCoO2 enabling high-energy lithium-ion batteries[J]. Nano Letters, 2020, 20(6): 4558-4565. DOI: 10.1021/acs.nanolett.0c01413. |
84 | LIU X X, LIU T C, WANG R, et al. Prelithiated Li-enriched gradient interphase toward practical high-energy NMC-silicon full cell[J]. ACS Energy Letters, 2021, 6(2): 320-328. DOI: 10.1021/acsenergylett.0c02487. |
85 | ARAVINDAN V, NAN S, KEPPELER M, et al. Pre-lithiated LixMn2O4: A new approach to mitigate the irreversible capacity loss in negative electrodes for Li-ion battery[J]. Electrochimica Acta, 2016, 208: 225-230. DOI: 10.1016/j.electacta.2016.05.035. |
[1] | 武小兰, 马彭杰, 白志峰, 刘成龙, 郭桂芳, 张锦华. 一种锂离子电池组智能PID双层主动均衡控制方法[J]. 储能科学与技术, 2025, 14(3): 1150-1159. |
[2] | 曾帅波, 李涌仪, 彭静, 何梓星, 梁倬健, 徐伟, 蓝凌霄, 梁兴华. 基于三元锂离子电池的导电剂优化设计[J]. 储能科学与技术, 2025, 14(3): 1187-1197. |
[3] | 张朝龙, 陈阳, 刘梦玲, 张俣峰, 华国庆, 阴盼昐. 一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2025, 14(3): 1258-1269. |
[4] | 李南, 马静, 黄挺秀, 沈毅星, 沈旻, 江依义, 洪涛, 马国强, 马紫峰. 腈类化合物在高电压电解液中的研究进展[J]. 储能科学与技术, 2025, 14(3): 997-1009. |
[5] | 陈会明, 蔡艺嘉, 尹文骥, 陈美芬, 黄有国, 胡思江, 王红强, 李庆余. 铬钼双掺杂调控富锂锰基正极材料结构和电化学性能[J]. 储能科学与技术, 2025, 14(3): 1123-1132. |
[6] | 周丽萍, 周德清, 郑锋华, 潘齐常, 胡思江, 蒋永杰, 王红强, 李庆余. 锂离子电池Si@Void@C复合负极材料的制备及其应用[J]. 储能科学与技术, 2025, 14(3): 1115-1122. |
[7] | 张新宇, 罗声豪, 吴颖欣, 刘针莹, 张立志, 凌子夜. 复合相变材料用于锂离子电池热管理和热失控防护研究进展[J]. 储能科学与技术, 2025, 14(3): 1040-1053. |
[8] | 周德清, 蔡艺嘉, 张子芩, 周丽萍, 胡思江, 黄有国, 王红强, 李庆余. MoS2 尖晶石包覆富锂锰基正极材料的电化学性能[J]. 储能科学与技术, 2025, 14(3): 1087-1096. |
[9] | 段双明, 夏馗峰, 朱微. 考虑多种应用场景的锂离子电池多阶优化充电策略[J]. 储能科学与技术, 2025, 14(2): 779-790. |
[10] | 张子恒, 耿萌萌, 范茂松, 金玉红, 刘晶冰, 杨凯, 汪浩. 基于弛豫时间分布法的退役动力电池健康状态评估[J]. 储能科学与技术, 2025, 14(2): 770-778. |
[11] | 李嘉波, 王志璇, 田迪, 孙中麟. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J]. 储能科学与技术, 2025, 14(2): 659-670. |
[12] | 张建茹, 王其钰, 姬瑛卉, 高鑫, 禹习谦, 李泓. 俄歇电子能谱在锂离子电池分析中的应用[J]. 储能科学与技术, 2025, 14(2): 755-769. |
[13] | 王海瑞, 徐长宇, 朱贵富, 侯晓建. 一种并行多尺度特征融合模型开展的基于弛豫电压的锂电池SOH估计研究[J]. 储能科学与技术, 2025, 14(2): 799-811. |
[14] | 匡智伟, 张振东, 盛雷, 付林祥. 储能用高容量锂离子电池低温快速加热方法研究[J]. 储能科学与技术, 2025, 14(2): 791-798. |
[15] | 李和雨, 洪小波, 陈子涵, 阮殿波. 多孔隔热板对锂离子电池模组热蔓延阻隔效果研究[J]. 储能科学与技术, 2025, 14(2): 479-487. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||