1 |
WANG H M, CHEN S S, FU C L, et al. Recent advances in conversion-type electrode materials for post lithium-ion batteries[J]. ACS Materials Letters, 2021, 3(7): 956-977. DOI: 10.1021/acsmaterialslett.1c00043.
|
2 |
COSTA C M, LEE Y H, KIM J H, et al. Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes[J]. Energy Storage Materials, 2019, 22: 346-375. DOI: 10.1016/j.ensm.2019.07.024.
|
3 |
WANG Y L, YANG F Z, WU T B, et al. Roundly exploring the synthesis, structural design, performance modification, and practical applications of silicon-carbon composite anodes for lithium-ion batteries[J]. Journal of Energy Storage, 2024, 101: 113794. DOI: 10.1016/j.est.2024.113794.
|
4 |
LEI X C, WANG Y Y, WANG J Y, et al. Si-based high-entropy anode for lithium-ion batteries[J]. Small Methods, 2024, 8(1): e2300754. DOI: 10.1002/smtd.202300754.
|
5 |
ZHANG L, LIU X X, ZHAO Q J, et al. Si-containing precursors for Si-based anode materials of Li-ion batteries: A review[J]. Energy Storage Materials, 2016, 4: 92-102. DOI: 10.1016/j.ensm. 2016.01.011.
|
6 |
REN H L, SU Y, ZHAO S, et al. N and B co-doping to enhance Li adsorption and diffusion properties on silicene/graphene heterostructures: Insights from density functional theory[J]. Materials Science in Semiconductor Processing, 2025, 186: 109041. DOI: 10.1016/j.mssp.2024.109041.
|
7 |
ZENG S B, LIN Z, PENG J, et al. Synergistic structural integrity and remarkable structural stability of NC@Si anodes for lithium-ion batteries[J]. Materials Research Bulletin, 2025, 182: 113162. DOI: 10.1016/j.materresbull.2024.113162.
|
8 |
WANG B W, XUE K Y, XI L, et al. Enhanced strain mapping unveils internal deformation dynamics in silicon-based lithium-ion batteries during electrochemical cycling[J]. Materials & Design, 2024, 247: 113404. DOI: 10.1016/j.matdes.2024.113404.
|
9 |
ASHURI M, HE Q R, LIU Y Z, et al. Hollow silicon nanospheres encapsulated with a thin carbon shell: An electrochemical study[J]. Electrochimica Acta, 2016, 215: 126-141. DOI:10.1016/j.electacta.2016.08.059.
|
10 |
WEN Z H, LU G H, MAO S, et al. Silicon nanotube anode for lithium-ion batteries[J]. Electrochemistry Communications, 2013, 29: 67-70. DOI: 10.1016/j.elecom.2013.01.015.
|
11 |
ZHANG F F, WAN L, CHEN J T, et al. Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode[J]. Electrochimica Acta, 2018, 280: 86-93. DOI: 10.1016/j.electacta.2018.05.111.
|
12 |
PATHAK A D, CHANDA U K, SAMANTA K, et al. Selective leaching of Al from hypereutectic Al-Si alloy to produce nano-porous silicon (NPS) anodes for lithium ion batteries[J]. Electrochimica Acta, 2019, 317: 654-662. DOI: 10.1016/j.electacta.2019.06.040.
|
13 |
FANG D L, ZHAO Y C, WANG S S, et al. Highly efficient synthesis of nano-Si anode material for Li-ion batteries by a ball-milling assisted low-temperature aluminothermic reduction[J]. Electrochimica Acta, 2020, 330: 135346. DOI: 10.1016/j.electacta.2019.135346.
|
14 |
LIN C, OUYANG L Z, ZHOU C J, et al. A novel selenium-phosphorous amorphous composite by plasma assisted ball milling for high-performance rechargeable potassium-ion battery anode[J]. Journal of Power Sources, 2019, 443: 227276. DOI: 10.1016/j.jpowsour.2019.227276.
|
15 |
LIANG J S, HUO F L, ZHANG Z Y, et al. Controlling the phenolic resin-based amorphous carbon content for enhancing cycling stability of Si nanosheets@C anodes for lithium-ion batteries[J]. Applied Surface Science, 2019, 476: 1000-1007. DOI: 10.1016/j.apsusc.2019.01.220.
|
16 |
ZHU M, YANG J, YU Z H, et al. Novel hybrid Si nanocrystals embedded in a conductive SiOx@C matrix from one single precursor as a high performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(15): 7026-7034. DOI: 10.1039/C7TA01254C.
|
17 |
KIM S J, KIM M C, HAN S B, et al. 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries[J]. Nano Energy, 2016, 27: 545-553. DOI: 10.1016/j.nanoen.2016.08.012.
|
18 |
LI C L, ZHU Y, QUAN Y, et al. Mitigating volume expansion of silicon-based anode through interfacial engineering based on intermittent discharge strategy[J]. Journal of Energy Chemistry, 2024, 98: 680-691. DOI: 10.1016/j.jechem.2024.07.019.
|
19 |
XIE J, TONG L, SU L W, et al. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance[J]. Journal of Power Sources, 2017, 342: 529-536. DOI: 10.1016/j.jpowsour. 2016.12.094.
|
20 |
WANG D K, ZHOU C L, CAO B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials, 2020, 24: 312-318. DOI: 10.1016/j.ensm. 2019.07.045.
|
21 |
XU C, LINDGREN F, PHILIPPE B, et al. Improved performance of the silicon anode for Li-ion batteries: Understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chemistry of Materials, 2015, 27(7): 2591-2599. DOI:10.1021/acs.chemmater.5b00339.
|
22 |
LIN H Y, LI C H, WANG D Y, et al. Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode[J]. Nanoscale, 2016, 8(3): 1280-1287. DOI: 10.1039/c5nr07152f.
|
23 |
PAN Q C, ZHANG Q B, ZHENG F H, et al. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries[J]. ACS Nano, 2018, 12(12): 12578-12586. DOI:10.1021/acsnano.8b07172.
|
24 |
HUANG Y G, PAN Q C, WANG H Q, et al. Preparation of a Sn@SnO2@C@MoS2 composite as a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(19): 7185-7189. DOI: 10.1039/C6TA02080A.
|