储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1115-1122.doi: 10.19799/j.cnki.2095-4239.2024.1255

• 储能新锐科学家专刊 • 上一篇    下一篇

锂离子电池Si@Void@C复合负极材料的制备及其应用

周丽萍1(), 周德清1, 郑锋华2, 潘齐常2, 胡思江2, 蒋永杰2, 王红强2(), 李庆余2   

  1. 1.安徽益佳通电池有限公司,安徽 宣城 242000
    2.广西师范大学化学与药学学院低碳能源材料广西重点实验室,广西 桂林 541004
  • 收稿日期:2024-12-30 修回日期:2025-01-17 出版日期:2025-03-28 发布日期:2025-04-28
  • 通讯作者: 王红强 E-mail:zhoulp@eikto.cn;whq74@126.com
  • 作者简介:周丽萍(1978—),女,硕士,研究方向为新型储能技术,E-mail:zhoulp@eikto.cn
  • 基金资助:
    广西自然科学基金(2023GXNSFGA026002);中央引导地方科技发展资金项目(202301001);国家自然科学基金(52104298);广西科技基地与人才专项(GUIKE AD23023004)

Preparation and application of Si@void@C composite anode materials for lithium-ion batteries

Liping ZHOU1(), Deqing ZHOU1, Fenghua ZHENG2, Qichang PAN2, Sijiang HU2, Yongjie JIANG2, Hongqiang WANG2(), Qingyu LI2   

  1. 1.Anhui Yijiato Battery Co. , Ltd. , Xuancheng 242000, Anhui, China
    2.Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China
  • Received:2024-12-30 Revised:2025-01-17 Online:2025-03-28 Published:2025-04-28
  • Contact: Hongqiang WANG E-mail:zhoulp@eikto.cn;whq74@126.com

摘要:

本研究旨在解决硅基负极材料在锂离子电池充放电过程中存在的严重体积膨胀以及导电性较差的问题。为此,提出了一种具有中空结构的Si@Void@C复合材料,通过创新性设计提高其结构稳定性和电化学性能。研究中采用Sb2S3作为硬模板,结合机械球磨法制备了纳米级Si/Sb2S3颗粒。随后以间苯二酚-甲醛为碳源,通过碳热还原法构建出内部具有空隙的中空结构。在这一过程中,碳壳包覆硅纳米颗粒,不仅有效避免了硅与电解液的直接接触,还显著提升了材料的导电性。同时,硅纳米颗粒与碳壳之间的空隙能够缓冲充放电过程中由于体积变化引发的机械应力,进一步改善其循环稳定性。作为锂离子电池负极材料,该复合材料在0.5 A/g电流密度下表现出优异的电化学性能,首次放电容量达到1691 mAh/g。在经过500次循环后,仍能保持735.9 mAh/g的高可逆容量,展现了优异的循环稳定性和容量保持能力。

关键词: 锂离子电池, 负极材料, Si, Si/C复合材料, 缓冲基体

Abstract:

This study addresses the severe volume expansion and poor conductivity issues of silicon-based anode materials during the charge-discharge process in lithium-ion batteries. To improve structural stability and electrochemical performance, a Si@Void@C composite material with a hollow structure was designed. In this study, Sb2S3 was used as a hard template and nano-sized Si/Sb2S3 particles were prepared via mechanical ball milling. Subsequently, resorcinol-formaldehyde was used as the carbon source, and a hollow structure with internal voids was constructed using the carbothermal reduction method. During this process, the carbon shell coating the silicon nanoparticles prevented direct contact between silicon and the electrolyte while considerably enhancing the material's conductivity. Additionally, the voids between the silicon nanoparticles and the carbon shell buffered the mechanical stress caused by volume changes during charge-discharge cycles, further improving cycle stability. As an anode material for lithium-ion batteries, the Si@Void@C composite exhibited excellent electrochemical performance, achieving an initial discharge capacity of 1691 mAh/g at a current density of 0.5 A/g. Even after 500 cycles, it maintained a high reversible capacity of 735.9 mAh/g, demonstrating exceptional cycling stability and capacity retention.

Key words: lithium-ion batteries, anode materials, Si, Si/C composites, buffering matrix

中图分类号: