储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1107-1114.doi: 10.19799/j.cnki.2095-4239.2024.0870

• 储能新锐科学家专刊 • 上一篇    下一篇

速生木基钠离子电池硬碳负极构效关系

王蕾(), 刘少冕, 范凤兰(), 杨子腾   

  1. 河北民族师范学院化学与化工学院,河北 承德 067000
  • 收稿日期:2024-09-14 修回日期:2024-09-24 出版日期:2025-03-28 发布日期:2025-04-28
  • 通讯作者: 范凤兰 E-mail:fengqingxue12@sohu.com;ffl619@163.com
  • 作者简介:王蕾(1986—),女,硕士研究生,研究方向为新型储能材料,E-mail:fengqingxue12@sohu.com
  • 基金资助:
    河北省教育厅科学研究项目(ZC2024162);河北民族师范学院科研项目(PT2023002);河北民族师范学院博士科研启动基金项目(DR2022008)

Structure-activity relationships of fast-growing wood based hard carbon anodes for sodium ion battery

Lei WANG(), Shaomian LIU, Fenglan FAN(), Ziteng YANG   

  1. Department of Chemistry and Chemical Engineering, Hebei Minzu Normal University, Chengde 067000, Hebei, China
  • Received:2024-09-14 Revised:2024-09-24 Online:2025-03-28 Published:2025-04-28
  • Contact: Fenglan FAN E-mail:fengqingxue12@sohu.com;ffl619@163.com

摘要:

生物质具有廉价易得、可持续性好等优点,可用于钠离子电池负极材料。选用一种典型速生木材(巴尔沙木)作为前体,通过不同温度下的高温碳化一步法制得巴尔沙木基硬碳材料并作为钠离子电池负极。采用扫描电镜、X射线衍射、拉曼光谱、比表面积和孔径分布研究材料的形貌和结构特点;通过恒电流充放电、循环伏安、电化学滴定、交流阻抗谱等手段研究材料的电化学性能。研究结果表明:该硬碳的织构主要由纤维状和片层结构构成,结构层间距随着碳化温度升高而减小,结构缺陷随碳化温度升高而增加;碳化温度为1100 ℃时,得到的负极材料表现出了最大比表面积(38.8 m2/g),并在首次库仑效率、倍率性能和循环性能方面,相比较于其他碳化温度(900 ℃和1300 ℃)得到的材料,表现出了更优的性能。进一步研究表明,碳化温度900 ℃和1100 ℃得到的巴尔沙木基硬碳材料,相比较1300 ℃碳化得到的材料,钠离子扩散速率高、电荷转移电阻低、不易受到扩散控制,因此大电流密度下(5 A/g)容量表现更加优良。

关键词: 巴尔沙木, 生物质, 硬碳, 钠离子电池, 电化学性能

Abstract:

Hard carbon prepared from biomass-based precursors offers many advantages as anodes for sodium ion batteries (SIB), such as low cost and sustainability. In this paper, hard carbon was prepared by carbonizing typical fast-growing wood (balsa wood) at various high temperatures and then used as anodes for SIB. The morphology and structural characteristics of the obtained materials were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, specific surface area analysis, and pore size distribution (PSD) measurements. The electrochemical performance of the materials was evaluated by galvanostatic charge-discharge testing, cyclic voltammetry (CV), the galvanostatic intermittent titration technique (GITT), and electrical impedance spectroscopy (EIS). The results showed that the balsa wood-based hard carbon mainly consisted of a fibrous and layered structure, with the interlayer distance decreasing and structural defects increasing as the carbonization temperature increased. Among the samples, the hard carbon prepared at 1100 ℃ exhibited the largest specific surface area (38.8 m2/g) and demonstrated excellent performance in terms of initial Coulombic efficiency, rate capability, and cycling stability. Further studies indicated that the high ionic diffusion rate, low charge transfer resistance, and reduced diffusion-controlled process enabled the materials carbonized at 900 ℃ and 1100 ℃ to perform better at a high current density (5 A/g).

Key words: balsa wood, biomass, hard carbon, sodium ion batteries, electrochemical performance

中图分类号: