储能科学与技术

• 储能科学与技术 •    

钠离子电池硬炭负极容量提升策略研究进展

常永刚1(), 张晋豪1, 解炜1, 李秀春1,2, 王毅林3,4, 陈成猛3()   

  1. 1.中煤华利能源控股有限公司,北京市 100020
    2.中煤华利新疆炭素科技有限公司,新疆 哈密 839200
    3.中国科学院山西煤炭化学研究所,山西 太原 030001
    4.中国科学院大学,北京 100049
  • 收稿日期:2024-09-29 修回日期:2024-10-26
  • 通讯作者: 陈成猛 E-mail:changyongg@chinacoal.com;ccm@sxicc.ac.cn
  • 作者简介:常永刚(1976—),男,博士,教授级高级工程师,研究方向,煤基炭材料,E-mail:changyongg@chinacoal.com
  • 基金资助:
    国家重点研发计划,煤基先进功能碳材料的规模化智能制造与高值利用技术(2022YFB4101600);中煤-国科-煤化所联合企业项目,千吨级煤基硬炭工业示范技术开发(20241CS012)

Capacity enhancement strategy of hard carbon anode for sodium ion battery : A review

Yonggang CHANG1(), Jinhao ZHANG1, Wei XIE1, Xiuchun LI1,2, Yilin Wang3,4, Chengmeng CHEN3()   

  1. 1.China Coal Huali Energy Holdings Corporation Ltd. , Beijing 100020, China
    2.China Coal Huali Xinjiang Carbon Technology Corporation Ltd. , Hami, 839200, Xinjiang, China
    3.Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
    4.University of Chinese Academy of Sciences, Beijing, 100049, China
  • Received:2024-09-29 Revised:2024-10-26
  • Contact: Chengmeng CHEN E-mail:changyongg@chinacoal.com;ccm@sxicc.ac.cn

摘要:

锂离子电池作为电化学储能领域的代表性技术,在经济社会发展中愈发不可或缺。但全球锂资源分布不均,我国锂资源安全受到严峻挑战。相比之下,钠离子电池由于储量丰富有望成为锂离子电池的重要补充技术和新能源产业摆脱对外资源依赖的重要解决方案。负极材料是影响钠离子电池性能的关键因素之一。硬炭由于其综合性能良好已经率先产业化,但其容量低仍限制了其进一步发展。本文首先回顾了硬炭储钠的四种模型,包括“插入-填充”模型,“吸附-插入”模型,“吸附-填充”模型,“三阶段”模型。其次介绍了拉曼光谱、对分布函数、正电子湮灭寿命谱、扩展X射线吸收精细结构和电子顺磁共振、气体吸脱附、小角X射线散射等在缺陷及孔结构表征上的应用。着重介绍了斜坡平台容量提升策略诸如杂原子掺杂、炭化温度调控、孔结构调控、微晶结构调控等方法。综合分析表明,通过增加硬炭中的缺陷浓度可以有效地提升硬炭的斜坡容量以及通过提升闭孔孔容可以有效提升硬炭的平台容量。最后提出了硬炭的发展方向和展望,旨在为钠离子电池的进一步发展提供有价值的参考。

关键词: 钠离子电池, 硬炭, 斜坡平台容量优化, 闭孔形成机理

Abstract:

As a cornerstone technology in electrochemical energy storage, lithium-ion batteries play an increasingly vital role in facilitating economic and social progress. However, the uneven global distribution of lithium resources presents significant challenges, particularly regarding the security of lithium supplies in China. In this context, sodium-ion batteries emerge as a promising complementary technology, offering a strategic alternative that capitalizes on abundant sodium reserves and mitigates dependence on foreign resources. The performance of sodium-ion batteries is critically influenced by the choice of anode materials, with hard carbon being the most industrially advanced due to its commendable overall performance. Nonetheless, its inherently low capacity remains a barrier to further advancement. This review first recalls four distinct models of sodium storage in hard carbon: "insertion-filling," "adsorption-insertion," "adsorption-filling," and the "three-stage" model. Subsequently, it explores various characterization techniques—such as Raman spectroscopy, pair distribution function analysis, positron annihilation lifetime spectroscopy, extended X-ray absorption fine structure, electron paramagnetic resonance, gas adsorption/desorption, and small-angle X-ray scattering to elucidate the defects and pore structures of hard carbon. Moreover, the review emphasizes strategies for enhancing slope/plateau capacity, including heteroatom doping, modulation of carbonization temperature, alteration of pore structures, and adjustments to microcrystalline structures. Comprehensive analysis indicates that increasing the defect concentration in hard carbon can significantly enhance its slope capacity, while increasing the volume of closed pores can effectively improve its plateau capacity. Finally, the review delineates potential development trajectories and perspectives for hard carbon, aiming to provide valuable insights for advancing sodium-ion battery technology.

Key words: sodium-ion batteries, hard carbon, enhancement of slope/plateau capacity, formation mechanism of closed pores

中图分类号: