• 储能科学与技术 •
常永刚1(), 张晋豪1, 解炜1, 李秀春1,2, 王毅林3,4, 陈成猛3()
收稿日期:
2024-09-29
修回日期:
2024-10-26
通讯作者:
陈成猛
E-mail:changyongg@chinacoal.com;ccm@sxicc.ac.cn
作者简介:
常永刚(1976—),男,博士,教授级高级工程师,研究方向,煤基炭材料,E-mail:changyongg@chinacoal.com;
基金资助:
Yonggang CHANG1(), Jinhao ZHANG1, Wei XIE1, Xiuchun LI1,2, Yilin Wang3,4, Chengmeng CHEN3()
Received:
2024-09-29
Revised:
2024-10-26
Contact:
Chengmeng CHEN
E-mail:changyongg@chinacoal.com;ccm@sxicc.ac.cn
摘要:
锂离子电池作为电化学储能领域的代表性技术,在经济社会发展中愈发不可或缺。但全球锂资源分布不均,我国锂资源安全受到严峻挑战。相比之下,钠离子电池由于储量丰富有望成为锂离子电池的重要补充技术和新能源产业摆脱对外资源依赖的重要解决方案。负极材料是影响钠离子电池性能的关键因素之一。硬炭由于其综合性能良好已经率先产业化,但其容量低仍限制了其进一步发展。本文首先回顾了硬炭储钠的四种模型,包括“插入-填充”模型,“吸附-插入”模型,“吸附-填充”模型,“三阶段”模型。其次介绍了拉曼光谱、对分布函数、正电子湮灭寿命谱、扩展X射线吸收精细结构和电子顺磁共振、气体吸脱附、小角X射线散射等在缺陷及孔结构表征上的应用。着重介绍了斜坡平台容量提升策略诸如杂原子掺杂、炭化温度调控、孔结构调控、微晶结构调控等方法。综合分析表明,通过增加硬炭中的缺陷浓度可以有效地提升硬炭的斜坡容量以及通过提升闭孔孔容可以有效提升硬炭的平台容量。最后提出了硬炭的发展方向和展望,旨在为钠离子电池的进一步发展提供有价值的参考。
中图分类号:
常永刚, 张晋豪, 解炜, 李秀春, 王毅林, 陈成猛. 钠离子电池硬炭负极容量提升策略研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2024.0926.
Yonggang CHANG, Jinhao ZHANG, Wei XIE, Xiuchun LI, Yilin Wang, Chengmeng CHEN. Capacity enhancement strategy of hard carbon anode for sodium ion battery : A review[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.0926.
1 | HE X, LAI W, LIANG Y, et al. Achieving All-Plateau and High-Capacity Sodium Insertion in Topological Graphitized Carbon[J]. Advanced Materials, 2023, 35(40): 2302613. |
2 | LIU M, WU F, GONG Y, et al. Interfacial Catalysis Enabled Layered and Inorganic-Rich SEI on Hard Carbon Anodes in Ester Electrolytes for Sodium-Ion Batteries[J]. Advanced Materials, 2023, 35(29): 2300002. |
3 | SONG M, YI Z, XU R, et al. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Materials, 2022, 51: 620-629. |
4 | NIITANI K, USHIRODA S, KUWATA H, et al. Hard Carbon Anode with a Sodium Carborane Electrolyte for Fast-Charging All-Solid-State Sodium-Ion Batteries[J]. ACS Energy Letters, 2022, 7(1): 145-149. |
5 | SONG M, XIE L, CHENG J, et al. Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 66: 448-458. |
6 | LI Q, ZHANG J, ZHONG L, et al. Unraveling the Key Atomic Interactions in Determining the Varying Li/Na/K Storage Mechanism of Hard Carbon Anodes[J]. Advanced Energy Materials, 2022, 12(37): 2201734. |
7 | KAMIYAMA A, KUBOTA K, IGARASHI D, et al. MgO-Template Synthesis of Extremely High Capacity Hard Carbon for Na-Ion Battery[J]. Angewandte Chemie International Edition, 2021, 60(10): 5114-5120. |
8 | DONG R, WU F, BAI Y, et al. Sodium Storage Mechanism and Optimization Strategies for Hard Carbon Anode of Sodium Ion Batteries[J]. Acta Chimica Sinica, 2021, 79(12): 1461. |
9 | CHU Y, ZHANG J, ZHANG Y, et al. Reconfiguring Hard Carbons with Emerging Sodium-Ion Batteries: A Perspective[J]. Advanced Materials, 2023, 35(31): 2212186. |
10 | HUANG G, ZHANG H, GAO F, et al. Overview of hard carbon anode for sodium-ion batteries: Influencing factors and strategies to extend slope and plateau regions[J]. Carbon, 2024, 228: 119354. |
11 | WANG Y, YI Z, XIE L, et al. Releasing Free Radicals in Precursor Triggers the Formation of Closed Pores in Hard Carbon for Sodium-Ion Batteries[J]. Advanced Materials, 2024, 36(26): 2401249. |
12 | XIE F, XU Z, GUO Z, et al. Hard carbons for sodium-ion batteries and beyond[J]. Progress in Energy, 2020, 2(4): 042002. |
13 | STEVENS D A, DAHN J R. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries[J]. Journal of The Electrochemical Society, 2000, 147(4): 1271. |
14 | STEVENS D A, DAHN J R. An In Situ Small-Angle X-Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell[J]. Journal of The Electrochemical Society, 2000, 147(12): 4428. |
15 | STEVENS D A, DAHN J R. The Mechanisms of Lithium and Sodium Insertion in Carbon Materials[J]. Journal of The Electrochemical Society, 2001, 148(8): A803. |
16 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
17 | QIU S, XIAO L, SUSHKO M L, et al. Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. |
18 | HOU Z, LEI D, JIANG M, et al. Biomass-Derived Hard Carbon with Interlayer Spacing Optimization toward Ultrastable Na-Ion Storage[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1367-1375. |
19 | ZHANG B, GHIMBEU C M, LABERTY C, et al. Correlation Between Microstructure and Na Storage Behavior in Hard Carbon[J]. Advanced Energy Materials, 2016, 6(1): 1501588. |
20 | BAI P, HE Y, ZOU X, et al. Elucidation of the Sodium-Storage Mechanism in Hard Carbons[J]. Advanced Energy Materials, 2018, 8(15): 1703217. |
21 | JIAN Z, BOMMIER C, LUO L, et al. Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode[J]. Chemistry of Materials, 2017, 29(5): 2314-2320. |
22 | BOMMIER C, SURTA T W, DOLGOS M, et al. New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon[J]. Nano Letters, 2015, 15(9): 5888-5892. |
23 | LI Z, BOMMIER C, CHONG Z S, et al. Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping[J]. Advanced Energy Materials, 2017, 7(18): 1602894. |
24 | WANG Q, ZHU X, LIU Y, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127: 658-666. |
25 | FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107. |
26 | FERRARI A C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1-2): 47-57. |
27 | LUSSOW R O, VASTOLA F J, WALKER P L. Kinetics of oxygen interaction with graphon between 450 and 675°C[J]. Carbon, 1967, 5(6): 591-602. |
28 | TSAI P chun, CHUNG S C, LIN S kang, et al. Ab initio study of sodium intercalation into disordered carbon[J]. Journal of Materials Chemistry A, 2015, 3(18): 9763-9768. |
29 | TERBAN M W, BILLINGE S J L. Structural Analysis of Molecular Materials Using the Pair Distribution Function[J]. Chemical Reviews, 2022, 122(1): 1208-1272. |
30 | Chen Xiang-Lei, Kong Wei, Weng Hui-Min, et al. Analysis of positron annihilation in carbon allotropes[J]. Acta Physica Sinica, 2008, 57(5): 3271-3275. |
31 | Chen Xiang-Lei, Xi Chuan-Ying, Ye Bang-Jiao, et al. Analysis of positron annihilation lifetime in single-walled carbon nanotube bundles[J]. Acta Physica Sinica, 2007, 56(11): 6695-6700. |
32 | REZVANI S J, D'ELIA A, MACIS S, et al. Structural anisotropy in three dimensional macroporous graphene: A polarized XANES investigation[J]. Diamond and Related Materials, 2021, 111: 108171. |
33 | HUANG Z, LUO N, ZHANG C, et al. Radical generation and fate control for photocatalytic biomass conversion[J]. Nature Reviews Chemistry, 2022, 6(3): 197-214. |
34 | HE W, YIN G, ZHAO Y, et al. Interactions between free radicals during co-pyrolysis of lignite and biomass[J]. Fuel, 2021, 302: 121098. |
35 | BEDA A, VAULOT C, MATEI GHIMBEU C. Hard carbon porosity revealed by the adsorption of multiple gas probe molecules (N2, Ar, CO2, O2 and H2)[J]. Journal of Materials Chemistry A, 2021, 9(2): 937-943. |
36 | MATEI GHIMBEU C, BEDA A, RÉTY B, et al. Review: Insights on Hard Carbon Materials for Sodium-Ion Batteries (SIBs): Synthesis-Properties-Performance Relationships[J]. Advanced Energy Materials, 2024, 14(19): 2303833. |
37 | LI Y, LU Y, MENG Q, et al. Regulating Pore Structure of Hierarchical Porous Waste Cork-Derived Hard Carbon Anode for Enhanced Na Storage Performance[J]. Advanced Energy Materials, 2019, 9(48): 1902852. |
38 | SAUREL D, SEGALINI J, JAUREGUI M, et al. A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage[J]. Energy Storage Materials, 2019, 21: 162-173. |
39 | JI W J, YI Z L, SONG M X, et al. Free radicals trigger the closure of open pores in lignin-derived hard carbons toward improved sodium-storage capacity[J]. Journal of Energy Chemistry, 2024, 94: 551-559. |
40 | ZHANG X, YI Z, TIAN Y, et al. Insight into the effect of structural differences among pitch fractions on sodium storage performance of pitch-derived hard carbons[J]. Carbon, 2024, 226: 119165. |
41 | CHENG M G, XIE L J, YI Z L, et al. Preparation of Enriched Closed-Pores Hard Carbon for High-Performance Sodium-Ion Batteries by the Poly(vinyl butyral) Template Method[J]. ACS Applied Energy Materials, 2024, 7(8): 3452-3461. |
42 | ZHONG S, LIU H, WEI D, et al. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries[J]. Chemical Engineering Journal, 2020, 395: 125054. |
43 | ZHANG Y, ZHANG Z, TANG Y, et al. Carbon block anodes with columnar nanopores constructed from amine-functionalized carbon nanosheets for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(46): 24393-24400. |
44 | KIM D Y, LI O L, KANG J. Novel synthesis of highly phosphorus-doped carbon as an ultrahigh-rate anode for sodium ion batteries[J]. Carbon, 2020, 168: 448-457. |
45 | SUN D, LIN S, YU D, et al. Interlayer and doping engineering in partially graphitic hollow carbon nanospheres for fast sodium and potassium storage[J]. Chinese Chemical Letters, 2023, 34(2): 107339. |
46 | CHEN C, HUANG Y, MENG Z, et al. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage[J]. Journal of Materials Science & Technology, 2021, 76: 11-19. |
47 | YUAN Z, SI L, ZHU X. Three-dimensional hard carbon matrix for sodium-ion battery anode with superior-rate performance and ultralong cycle life[J]. Journal of Materials Chemistry A, 2015, 3(46): 23403-23411. |
48 | CHENG H, TANG Z, LUO X, et al. Spartina alterniflora-derived porous carbon using as anode material for sodium-ion battery[J]. Science of The Total Environment, 2021, 777: 146120. |
49 | LI Z, CHEN Y, JIAN Z, et al. Defective Hard Carbon Anode for Na-Ion Batteries[J]. Chemistry of Materials, 2018, 30(14): 4536-4542. |
50 | WANG T, LIU L, WEI Y, et al. Agar-Derived Slope-Dominated Carbon Anode with Puparium Like Nano-Morphology for Cost-Effective SIBs[J]. Small, 2024, 20(20): 2309809. |
51 | TANG Z, ZHANG R, WANG H, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery[J]. Nature Communications, 2023, 14(1): 6024. |
52 | XU R, YI Z, SONG M, et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J]. Carbon, 2023, 206: 94-104. |
53 | ZHAO G, XU T, ZHAO Y, et al. Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries[J]. Energy Storage Materials, 2024, 67: 103282. |
54 | XIONG Z, YUE L, ZHANG Y, et al. Structural regulation of asphalt-based hard carbon microcrystals based on liquid-phase crosslinking to enhance sodium storage[J]. Journal of Colloid and Interface Science, 2024, 658: 610-616. |
55 | CAO B, LIU H, XU B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. Journal of Materials Chemistry A, 2016, 4(17): 6472-6478. |
56 | LU P, SUN Y, XIANG H, et al. 3D Amorphous Carbon with Controlled Porous and Disordered Structures as a High-Rate Anode Material for Sodium-Ion Batteries[J]. Advanced Energy Materials, 2018, 8(8): 1702434. |
57 | DENG W, CAO Y, YUAN G, et al. Realizing Improved Sodium-Ion Storage by Introducing Carbonyl Groups and Closed Micropores into a Biomass-Derived Hard Carbon Anode[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47728-47739. |
58 | ZHAO J, HE X, LAI W, et al. Catalytic Defect-Repairing Using Manganese Ions for Hard Carbon Anode with High-Capacity and High-Initial-Coulombic-Efficiency in Sodium-Ion Batteries[J]. Advanced Energy Materials, 2023, 13(8): 2300444. |
59 | MENG Q, LU Y, DING F, et al. Tuning the Closed Pore Structure of Hard Carbons with the Highest Na Storage Capacity[J]. Acs Energy Letters, 2019, 4(11): 2608. |
60 | XU T, QIU X, ZHANG X, et al. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance[J]. Chemical Engineering Journal, 2023, 452: 139514. |
61 | LI R R, HE X X, YANG Z, et al. Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(20): 7595-7605. |
[1] | 郝定邦, 栗永利. 高倍率和长循环稳定性钠离子电池正极材料Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05 @CuO的性能研究[J]. 储能科学与技术, 2024, 13(8): 2489-2498. |
[2] | 姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664. |
[3] | 范利君, 吴保周, 陈珂君. 不同形貌FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2024, 13(8): 2541-2549. |
[4] | 谭仕荣, 尹文骥, 曾翠鸿, 黎小琼, 訚硕, 纪方力, 胡思江, 王红强, 李庆余. 高温淬火对钠离子电池锰基层状正极材料结构和性能的影响[J]. 储能科学与技术, 2024, 13(7): 2399-2406. |
[5] | 徐雄文, 莫英, 周望, 姚环东, 洪娟, 雷化, 涂健, 刘继磊. 硬碳动力学特性对钠离子电池低温性能的影响及机制[J]. 储能科学与技术, 2024, 13(7): 2141-2150. |
[6] | 林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360. |
[7] | 王立锋, 任乃青, 杨海, 姚雨, 余彦. 低温钠离子电池电解液研究进展[J]. 储能科学与技术, 2024, 13(7): 2206-2223. |
[8] | 李丹, 马铁, 刘汉浩, 郭丽. 高倍率钠离子电池炭包覆纳米铋负极材料[J]. 储能科学与技术, 2024, 13(6): 1775-1785. |
[9] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[10] | 所聪, 王阳峰, 朱紫宸, 杨雁. 钠离子电池软碳基负极的研究进展[J]. 储能科学与技术, 2024, 13(6): 1807-1823. |
[11] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[12] | 赵毅伟, 张福华, 颜顺, 丁坤, 蓝海枫, 刘辉. 普鲁士蓝类钠离子电池正极材料导电性研究进展[J]. 储能科学与技术, 2024, 13(5): 1474-1486. |
[13] | 江成凡, 黄俊, 谢海波. 提高硬碳材料钠离子电池首次库仑效率的研究进展[J]. 储能科学与技术, 2024, 13(3): 825-840. |
[14] | 李珂, 郝奕帆, 方振华, 王静, 张松通, 祝夏雨, 邱景义, 明海. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. |
[15] | 蔡浩然, 闫利珏, 杨旭, 潘慧霖. O3/P2-Na x Ni1/3Co1/3Mn1/3O2 复合相正极材料的结构演变与储钠性能[J]. 储能科学与技术, 2023, 12(9): 2707-2714. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||