1 |
DUFFNER F, KRONEMEYER N, TÜBKE J, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nature Energy, 2021, 6: 123-134. DOI: 10.1038/s41560-020-00748-8.
|
2 |
VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 18013. DOI: 10.1038/natrevmats.2018.13.
|
3 |
GOODENOUGH J B, GAO H C. A perspective on the Li-ion battery[J]. Science China Chemistry, 2019, 62(12): 1555-1556. DOI: 10.1007/s11426-019-9610-3.
|
4 |
JIN T, WANG P F, WANG Q C, et al. Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2020, 59(34): 14511-14516. DOI: 10.1002/anie.202003972.
|
5 |
HU Y S, LU Y X. 2019 Nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries[J]. ACS Energy Letters, 2019, 4(11): 2689-2690. DOI: 10.1021/acsenergylett.9b02190.
|
6 |
SEONG W M, KIM Y, MANTHIRAM A. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2020, 32(22): 9479-9489. DOI: 10.1021/acs.chemmater.0c02808.
|
7 |
LAURO S N, BURROW J N, MULLINS C B. Restructuring the lithium-ion battery: A perspective on electrode architectures[J]. eScience, 2023, 3(4): 100152. DOI: 10.1016/j.esci.2023.100152.
|
8 |
YU C X, LI Y, WANG Z H, et al. Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery[J]. Rare Metals, 2022, 41(5): 1616-1625. DOI: 10.1007/s12598-021-01893-z.
|
9 |
WANG Q C, LI J B, JIN H B, et al. Prussian-blue materials: Revealing new opportunities for rechargeable batteries[J]. InfoMat, 2022, 4(6): e12311. DOI: 10.1002/inf2.12311.
|
10 |
XIE H J, WU Z L, WANG Z Y, et al. Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(7): 3606-3612. DOI: 10.1039/C9TA12429B.
|
11 |
TANG J L, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 396: 476-482. DOI: 10.1016/j.jpowsour. 2018.06.067.
|
12 |
ZHANG B, DUGAS R, ROUSSE G, et al. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries[J]. Nature Communications, 2016, 7: 10308. DOI: 10. 1038/ncomms10308.
|
13 |
NIU Y B, GUO Y J, YIN Y X, et al. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Advanced Materials, 2020, 32(33): e2001419. DOI: 10.1002/adma. 202001419.
|
14 |
MARTINEZ DE ILARDUYA J, OTAEGUI L, LÓPEZ DEL AMO J M, et al. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery[J]. Journal of Power Sources, 2017, 337: 197-203. DOI: 10.1016/j.jpowsour.2016.10.084.
|
15 |
WANG Q C, DING X Y, LI J B, et al. Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature[J]. Chemical Engineering Journal, 2022, 448: 137740. DOI: 10.1016/j.cej.2022.137740.
|
16 |
YOU Y, DOLOCAN A, LI W, et al. Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries[J]. Nano Letters, 2019, 19(1): 182-188. DOI: 10.1021/acs.nanolett.8b03637.
|
17 |
PARK K, YU B C, GOODENOUGH J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chemistry of Materials, 2015, 27(19): 6682-6688. DOI: 10.1021/acs.chemmater.5b02684.
|
18 |
ZHANG J X, CUI C Y, WANG P F, et al. "Water-in-salt" polymer electrolyte for Li-ion batteries[J]. Energy & Environmental Science, 2020, 13(9): 2878-2887. DOI: 10.1039/D0EE01510E.
|
19 |
JO C H, CHOI J U, YASHIRO H, et al. Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(8): 3903-3909. DOI: 10.1039/C8TA09833F.
|
20 |
MARELLI E, MARINO C, BOLLI C, et al. How to overcome Na deficiency in full cell using P2-phase sodium cathode–A proof of concept study of Na-rhodizonate used as sodium reservoir[J]. Journal of Power Sources, 2020, 450: 227617. DOI: 10.1016/j.jpowsour.2019.227617.
|
21 |
SINGH G, LÓPEZ DEL AMO J M, GALCERAN M, et al. Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2[J]. Journal of Materials Chemistry A, 2015, 3(13): 6954-6961. DOI: 10.1039/c4ta06360k.
|
22 |
LI W, LI J P, LI R R, et al. Study on sodium storage properties of manganese-doped sodium vanadium phosphate cathode materials[J]. Battery Energy, 2023, 2(2). DOI: 10.1002/bte2. 20220042.
|
23 |
KWADE A, HASELRIEDER W, LEITHOFF R, et al. Current status and challenges for automotive battery production technologies[J]. Nature Energy, 2018, 3: 290-300. DOI: 10.1038/s41560-018-0130-3.
|
24 |
SCHNELL J, GÜNTHER T, KNOCHE T, et al. All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production[J]. Journal of Power Sources, 2018, 382: 160-175. DOI: 10.1016/j.jpowsour.2018.02.062.
|
25 |
ZOU K Y, CAI P, TIAN Y, et al. Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors[J]. Small Methods, 2020, 4(3): 1900763. DOI: 10.1002/smtd.201900763.
|
26 |
DENG X L, ZOU K Y, CAI P, et al. Advanced battery-type anode materials for high-performance sodium-ion capacitors[J]. Small Methods, 2020, 4(10): 2000401. DOI: 10.1002/smtd.202000401.
|
27 |
JIA R, SHEN G Z, CHEN D. Recent progress and future prospects of sodium-ion capacitors[J]. Science China Materials, 2020, 63(2): 185-206. DOI: 10.1007/s40843-019-1188-x.
|
28 |
ZHANG H W, HU M X, LV Q, et al. Advanced materials for sodium-ion capacitors with superior energy-power properties: Progress and perspectives[J]. Small, 2020, 16(15): e1902843. DOI: 10.1002/smll.201902843.
|
29 |
ZHANG Y D, JIANG J M, AN Y F, et al. Sodium-ion capacitors: Materials, mechanism, and challenges[J]. ChemSusChem, 2020, 13(10): 2522-2539. DOI: 10.1002/cssc.201903440.
|
30 |
WANG K F, SUN F, SU Y L, et al. Natural template derived porous carbon nanoplate architectures with tunable pore configuration for a full-carbon sodium-ion capacitor[J]. Journal of Materials Chemistry A, 2021, 9(41): 23607-23618. DOI: 10.1039/D1TA04485K.
|