储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 21-29.doi: 10.19799/j.cnki.2095-4239.2024.0620

• 储能材料与器件 • 上一篇    下一篇

钠离子电池正极表面残余碱转换钠补偿包覆层

乌兰1(), 杨杰1, 耿磊1, 胡润1, 彭尚龙2   

  1. 1.西北民族大学化工学院,甘肃 兰州 730030
    2.兰州大学材料与能源学院,甘肃 兰州 730000
  • 收稿日期:2024-07-08 修回日期:2024-07-30 出版日期:2025-01-28 发布日期:2025-02-25
  • 通讯作者: 乌兰 E-mail:945934161@qq.com
  • 作者简介:乌兰(1973—),女,博士,教授,从事储能材料合成与改性方面研究,E-mail:945934161@qq.com
  • 基金资助:
    甘肃省自然科学基金重点项目(22JR5RA178);中央高校基本科研业务费(31920230168)

Residual alkali converted sodium compensation cladding on the surface of sodium ion battery cathode

Lan WU1(), Jie YANG1, Lei GENG1, Run HU1, Shanglong PENG2   

  1. 1.College of Chemical Engineering, Northwest University for Nationalities, Lanzhou 730030, Gansu, China
    2.College of Materials and Energy, Lanzhou University, Lanzhou 730000, Gansu, China
  • Received:2024-07-08 Revised:2024-07-30 Online:2025-01-28 Published:2025-02-25
  • Contact: Lan WU E-mail:945934161@qq.com

摘要:

钠离子电池(SIBs)在大规模电能存储领域引起了广泛关注。然而,在高温固相法合成层状正极材料的过程中,钠盐和金属氧化物通过化学键的断裂和重组形成层状结构,部分钠盐未能进入材料的体相结构,而是残留在材料表面形成碱性物质,如NaOH、NaHCO3和Na2CO3,统称为残碱。这些残碱加速了液体电解质中过渡金属层的溶解,导致正极材料的晶体结构发生不可逆的退化。此外,碳酸钠在高电压下分解产生二氧化碳气体,是电池胀包的原因之一,带来安全隐患,并导致钠离子全电池中出现严重的钠离子损失,限制了其能量密度和循环寿命。为了解决这一问题,本研究采用了一种创新性实验方案,将材料表面的有害残碱成分成功转化为NaMgPO4包覆层结构。近年来兴起的差示电化学质谱(DEMS)技术被用来验证该残碱处理工艺的效果。制备的NaMgPO4 包覆层均匀覆盖在正极材料表面,厚度约为5 nm,且具有良好的结晶性。X射线衍射(XRD)分析表明,包覆材料的衍射峰与原始材料的衍射峰完全对应,证明少量包覆不会影响材料的晶体结构。此外,包覆层的存在轻微扩大了钠层间距,提升了正极材料的倍率性能。NNM-2材料展示出优异的倍率性能,在1 C电流密度下首圈放电比容量为169 mAh/g,经过100次循环后容量保持率为74%。在充放电过程中基本不再产生CO2,表明残碱含量显著减少。

关键词: 钠离子电池, 残碱, NaMgPO4包覆, 电化学质谱

Abstract:

Sodium-ion batteries (SIBs) have attracted immense attention in large-scale electrical energy storage. During the synthesis of layered cathode materials by the high-temperature solid-phase method, sodium salts, and metal oxides form a layered structure by breaking and reorganizing chemical bonds. However, some sodium salts fail to enter the bulk structure of the materials and remain on the surface of the materials to form alkaline substances, such as NaOH, NaHCO3, and Na2CO3, collectively referred to as residual bases. These residual bases accelerate the dissolution of the transition metal layer in the liquid electrolyte, leading to irreversible degradation of the crystal structure of the cathode material. Moreover, the decomposition of sodium carbonate at high voltages produces CO2 gas, one of the causes of battery pack expansion poses a safety hazard, and leads to severe sodium ion losses in sodium-ion full batteries, thereby limiting their energy density and cycle life. To solve this issue, this study adopted an innovative experimental scheme to successfully convert the harmful residual alkali components on the material surface into the NaMgPO4 cladding structure. Differential electrochemical mass spectrometry (DEMS), a technique that has gained immense prominence in recent years, was used to confirm the effectiveness of this residual alkali treatment process. The prepared NaMgPO4 cladding layer was uniformly covered on the surface of the cathode material with a thickness of about 5 nm and good crystallinity. X-ray diffraction (XRD) analysis showed that the diffraction peaks of the cladding material corresponded exactly to those of the original material, demonstrating that a small amount of cladding would not affect the crystal structure of the material. Furthermore, the presence of the capping layer slightly increases the spacing between the sodium layers, improving the multiplicity performance of the cathode material. The NNM-2 material showed excellent multiplicity performance, achieving a specific capacity of 169 mAh g-1 during the first turn at a current density of 1C and a capacity retention rate of 74% following 100 cycles. The CO2 emission was almost eliminated during the charging and discharging process, suggesting a substantial reduction in the residual alkali content.

Key words: sodium-ion battery, residual alkali, NaMgPO4 coating, electrochemical mass spectrome

中图分类号: