储能科学与技术 ›› 2024, Vol. 13 ›› Issue (2): 436-461.doi: 10.19799/j.cnki.2095-4239.2023.0501

• 储能材料与器件 • 上一篇    下一篇

高功率化学电源体系发展及军事应用分析

李珂1(), 郝奕帆1, 方振华2, 王静1(), 张松通3, 祝夏雨3, 邱景义3, 明海3()   

  1. 1.燕山大学环境与化学工程学院,河北 秦皇岛 066004
    2.轻工业化学电源研究所,江苏 苏州 215600
    3.军事科学院防化研究院,北京 100191
  • 收稿日期:2023-07-24 修回日期:2023-09-22 出版日期:2024-02-28 发布日期:2024-03-01
  • 通讯作者: 王静,明海 E-mail:15518814937@163.com;jwang6027@ysu.edu.cn;hai.mingenergy@hotmail.com
  • 作者简介:李珂(1998—),女,硕士研究生,研究方向为化学电源,E-mail:15518814937@163.com
  • 基金资助:
    国家自然科学青年基金项目(21703285);河北省教育厅留学归国人员科研基金(C20210503);河北省科学技术厅(226Z4404G);河北省教育厅杰出青年学者基金会(BJ2021042)

Development and military application analysis of high-power chemical power supply system

Ke LI1(), Yifan HAO1, Zhenhua FANG2, Jing WANG1(), Songtong ZHANG3, Xiayu ZHU3, Jingyi QIU3, Hai MING3()   

  1. 1.School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
    2.Institute of Chemical Power Sources, Soochow University, Suzhou 215600, Jiangsu, China
    3.Research Institute of Chemical Defence, AMS, Beijing 100191, China
  • Received:2023-07-24 Revised:2023-09-22 Online:2024-02-28 Published:2024-03-01
  • Contact: Jing WANG, Hai MING E-mail:15518814937@163.com;jwang6027@ysu.edu.cn;hai.mingenergy@hotmail.com

摘要:

在全面电动化的背景下,各类电子产品应用的时空域快速转变对所配备的电池供电能力提出了更为苛刻的工况和环境适应要求,亟待发展充电时间短、小体积大电流输出的电源系统。本综述对近年来受到广泛关注的高功率化学电源体系在大倍率充放电领域的进展进行了梳理,包括锂离子电池、钠离子电池、赝电容电容器、离子型电容器(锂/钠/钾离子等)、铅炭电池等,分别从电极材料、电解质调控和电池结构等角度出发,重点分析了当前影响各电源体系在其功率性能方面的发展瓶颈、能力水平以及亟待突破的关键技术,并对其在低温启动、动力供电和脉冲响应等军事应用领域及所增益效能进行了分析研究。综合分析表明,针对不同的应用场景,为进一步遴选性能更好、更匹配的化学电源体系服务于装备的迭代升级和应用创新,通过构筑高稳定性和导电性的电极材料,宽温域、高电导率的电解质材料和改良电池结构从而减小内阻的途径,显著提升功率性能,并明确提出高功率电池存在最佳工作区间和最优工作策略的问题,尤其是在大电流充放电和脉冲工况下,这对于后续如何根据实际工况用好电池具有借鉴意义。有望在提升各化学电源体系的功率性能的同时,以最佳的系统管控方法和应用策略进一步提升电池的循环寿命、能量转换效率、安全性和可靠性,获得满足市场所需和军民急用的高功率电源产品。

关键词: 高功率, 锂离子电池, 钠离子电池, 电容器, 铅炭电池, 军事应用

Abstract:

In the context of comprehensive electrification, the rapid transformation of various electronic products in time and space domain has imposed demanding working conditions and environmental adaptation requirements on the power supply capacity of equipped batteries. There is an urgent need to develop power systems with short charging times, small volumes, and large current outputs. In this review, the development of high-power chemical power supply systems with high-rate charge and discharge, a topic of widespread concern in recent years, is reviewed. The systems under consideration include lithium-ion batteries, sodium-ion batteries, pseudocapacitors, ionic capacitors (lithium/sodium/potassium ion, etc.), and lead-carbon batteries. The review is approached from the perspectives of electrode materials, electrolyte regulation, and battery structure. The focus is on analyzing the developmental bottlenecks and current solutions influencing the power performance of these diverse power supply systems. The review covers the current developmental levels, technical capabilities, and key technologies requiring breakthroughs for each technology system. Military applications and equipment effectiveness are also explored in low-temperature starting, power supply, and pulse response. The comprehensive analysis shows the importance of selecting a chemical power supply system with superior performance and compatibility to serve the iterative upgrading and application innovation of equipment in different scenarios. To address challenges, it is emphasized that reducing internal resistance through the construction of electrode materials with high stability and conductivity, implementing electrolyte materials with a wide temperature range and high conductivity, and improving battery structure can considerably improve power performance. This review identifies the issues related to the optimal working range and strategy for high-power batteries, especially under high-current charging and pulse conditions, which is crucial for optimizing battery use according to actual working conditions in the future. The outlook anticipates advancements in the power performance of each chemical power supply system, along with improved cycle life, energy conversion efficiency, safety, and reliability of the batteries. Achieving these goals will require the implementation of the best system management and control methods and application strategies. This holistic approach aims to obtain high-power power supply products that meet market needs and are urgently needed by the military and civilians.

Key words: high rate, lithium-ion battery, sodium-ion battery, capacitor, lead carbon battery, military application

中图分类号: