14 |
HU J T, LI L Z, BI Y J, et al. Locking oxygen in lattice: A quantifiable comparison of gas generation in polycrystalline and single crystal Ni-rich cathodes[J]. Energy Storage Materials, 2022, 47: 195-202.
|
15 |
SENYSHYN A, MÜHLBAUER M J, DOLOTKO O, et al. Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite[J]. Journal of Power Sources, 2015, 282: 235-240.
|
16 |
SHARMA N, YU D H, ZHU Y, et al. In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4 in a commercial battery[J]. Journal of Power Sources, 2017, 342: 562-569.
|
17 |
WILHELM J, SEIDLMAYER S, ERHARD S, et al. In situ neutron diffraction study of lithiation gradients in graphite anodes during discharge and relaxation[J]. Journal of the Electrochemical Society, 2018, 165(9): A1846-A1856.
|
18 |
LIU H D, FELL C R, AN K, et al. In-situ neutron diffraction study of the xLi2MnO3 ·(1-x)LiMO2 (x=0, 0.5; M=Ni, Mn, Co) layered oxide compounds during electrochemical cycling[J]. Journal of Power Sources, 2013, 240: 772-778.
|
19 |
LI J, PETIBON R, GLAZIER S, et al. In-situ neutron diffraction study of a high voltage Li(Ni0.42Mn0.42Co0.16)O2/graphite pouch cell[J]. Electrochimica Acta, 2015, 180: 234-240.
|
20 |
GOONETILLEKE D, PRAMUDITA J C, HAGAN M, et al. Correlating cycling history with structural evolution in commercial 26650 batteries using in operando neutron powder diffraction[J]. Journal of Power Sources, 2017, 343: 446-457.
|
21 |
WANG C Q, WANG R, HUANG Z Y, et al. Unveiling the migration behavior of lithium ions in NCM/Graphite full cell via in operando neutron diffraction[J]. Energy Storage Materials, 2022, 44: 1-9.
|
22 |
柯承志, 肖本胜, 李苗, 等. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236.
|
|
KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236.
|
23 |
LIANG G M, DIDIER C, GUO Z P, et al. Understanding rechargeable battery function using in operando neutron powder diffraction[J]. Advanced Materials, 2020, 32(18): 1904528.
|
24 |
PETZ D, MÜHLBAUER M J, BARAN V, et al. Lithium heterogeneities in cylinder-type Li-ion batteries - fatigue induced by cycling[J]. Journal of Power Sources, 2020, 448: 227466.
|
25 |
PETZ D, MÜHLBAUER M J, BARAN V, et al. Lithium distribution and transfer in high-power 18650-type Li-ion cells at multiple length scales[J]. Energy Storage Materials, 2021, 41: 546-553.
|
26 |
VON LÜDERS C, ZINTH V, ERHARD S V, et al. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction[J]. Journal of Power Sources, 2017, 342: 17-23.
|
27 |
HOELZEL M, SENYSHYN A, JUENKE N, et al. High-resolution neutron powder diffractometer SPODI at research reactor FRM II[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 667: 32-37.
|
28 |
SORENSEN D R, HEERE M, SMITH A, et al. Methods—spatially resolved diffraction study of the uniformity of a Li-ion pouch cell[J]. Journal of The Electrochemical Society, 2022, 169: 030518.
|
29 |
CAI L, AN K, FENG Z L, et al. In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction[J]. Journal of Power Sources, 2013, 236: 163-168.
|
30 |
DENG Z, HUANG Z Y, SHEN Y, et al. Ultrasonic scanning to observe wetting and "unwetting" in Li-ion pouch cells[J]. Joule, 2020, 4(9): 2017-2029.
|
31 |
HOGREFE C, WALDMANN T, HÖLZLE M, et al. Direct observation of internal short circuits by lithium dendrites in cross-sectional lithium-ion in situ full cells[J]. Journal of Power Sources, 2023, 556: 232391.
|
32 |
SUN T, SHEN T T, ZHENG Y J, et al. Modeling the inhomogeneous lithium plating in lithium-ion batteries induced by non-uniform temperature distribution[J]. Electrochimica Acta, 2022, 425: 140701.
|
33 |
LI S, KIRKALDY N, ZHANG C, et al. Optimal cell tab design and cooling strategy for cylindrical lithium-ion batteries[J]. Journal of Power Sources, 2021, 492: 229594.
|
1 |
GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond—a 2030 vision[J]. Nature Communications, 2020, 11: 6279.
|
2 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
|
3 |
YUE X Y, ZHANG J, DONG Y T, et al. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries[J]. Angewandte Chemie International Edition, 2023, 62(19): e202302285.
|
4 |
PETZ D, MÜHLBAUER M J, SCHÖKEL A, et al. Heterogeneity of graphite lithiation in state-of-the-art cylinder-type Li-ion cells[J]. Batteries & Supercaps, 2021, 4(2): 327-335.
|
5 |
SENYSHYN A, MÜHLBAUER M J, DOLOTKO O, et al. Homogeneity of lithium distribution in cylinder-type Li-ion batteries[J]. Scientific Reports, 2016, 5: 18380.
|
6 |
MÜHLBAUER M J, DOLOTKO O, HOFMANN M, et al. Effect of fatigue/ageing on the lithium distribution in cylinder-type Li-ion batteries[J]. Journal of Power Sources, 2017, 348: 145-149.
|
7 |
MÜHLBAUER M J, PETZ D, BARAN V, et al. Inhomogeneous distribution of lithium and electrolyte in aged Li-ion cylindrical cells[J]. Journal of Power Sources, 2020, 475: 228690.
|
8 |
MOHANTY D, HOCKADAY E, LI J, et al. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources[J]. Journal of Power Sources, 2016, 312: 70-79.
|
9 |
ZHU J G, KNAPP M, SØRENSEN D R, et al. Investigation of capacity fade for 18650-type lithium-ion batteries cycled in different state of charge (SoC) ranges[J]. Journal of Power Sources, 2021, 489: 229422.
|
10 |
SØRENSEN D R, HEERE M, ZHU J G, et al. Fatigue in high-energy commercial Li batteries while cycling at standard conditions: An in situ neutron powder diffraction study[J]. ACS Applied Energy Materials, 2020, 3(7): 6611-6622.
|
11 |
WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells - A review[J]. Journal of Power Sources, 2018, 384: 107-124.
|
12 |
PAUL N, WANDT J, SEIDLMAYER S, et al. Aging behavior of lithium iron phosphate based 18650-type cells studied by in situ neutron diffraction[J]. Journal of Power Sources, 2017, 345: 85-96.
|
13 |
STREHLE B, FRIEDRICH F, GASTEIGER H A. A comparative study of structural changes during long-term cycling of NCM-811 at ambient and elevated temperatures[J]. Journal of the Electrochemical Society, 2021, 168(5): 050512.
|