储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 82-91.doi: 10.19799/j.cnki.2095-4239.2023.0638
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
肖也1,2(), 徐磊1,2, 闫崇1,2, 黄佳琦1,2()
收稿日期:
2023-09-18
修回日期:
2023-10-11
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
黄佳琦
E-mail:yexiao@bit.edu.cn;jqhuang@bit.edu.cn
作者简介:
肖也(1996—),男,博士研究生,研究方向为金属锂电池,E-mail:yexiao@bit.edu.cn;
基金资助:
Ye XIAO1,2(), Lei XU1,2, Chong YAN1,2, Jiaqi HUANG1,2()
Received:
2023-09-18
Revised:
2023-10-11
Online:
2024-01-05
Published:
2024-01-22
Contact:
Jiaqi HUANG
E-mail:yexiao@bit.edu.cn;jqhuang@bit.edu.cn
摘要:
参比电极对于解析高安全、高性能锂电池内部物理化学过程具有重要意义。然而在科学研究及产品开发中,可靠参比电极的实际构建和集成仍具有挑战性。本文首先阐明锂电池用参比电极的原理和特性,进而梳理基本设计参数,包括活性材料选择、几何尺寸、制备工艺和检测设置。然后介绍了引入参比电极的三电极体系在锂电池工作/失效机制分析方面的应用实例。最后展望了开发和部署锂电池用参比电极的挑战和发展方向。
中图分类号:
肖也, 徐磊, 闫崇, 黄佳琦. 锂电池用参比电极的设计与应用[J]. 储能科学与技术, 2024, 13(1): 82-91.
Ye XIAO, Lei XU, Chong YAN, Jiaqi HUANG. Design and application of reference electrodes for lithium batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 82-91.
1 | ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161. |
2 | DUFFNER F, KRONEMEYER N, TÜBKE J, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nature Energy, 2021, 6(2): 123-134. |
3 | ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22): 16610-16751. |
4 | FRITH JAMES T, LACEY MATTHEW J, ULDERICO U. A non-academic perspective on the future of lithium-based batteries[J]. Nature Communications, 2023, 14(1): 420. |
5 | LU Y X, RONG X H, HU Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153. |
6 | LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
7 | TALAIE E, BONNICK P, SUN X Q, et al. Methods and protocols for electrochemical energy storage materials research[J]. Chemistry of Materials, 2017, 29(1): 90-105. |
8 | RACCICHINI R, AMORES M, HINDS G. Critical review of the use of reference electrodes in Li-ion batteries: A diagnostic perspective[J]. Batteries, 2019, 5(1): 12. |
9 | ZHANG S S. Is Li/graphite half-cell suitable for evaluating lithiation rate capability of graphite electrode?[J]. Journal of the Electrochemical Society, 2020, 167(10): 100510. |
10 | ENDER M, WEBER A, ELLEN I T. Analysis of three-electrode setups for AC-impedance measurements on lithium-ion cells by FEM simulations[J]. Journal of the Electrochemical Society, 2011, 159(2): A128-A136. |
11 | QIN N, JIN L M, XING G G, et al. Decoupling accurate electrochemical behaviors for high-capacity electrodes via reviving three-electrode vehicles[J]. Advanced Energy Materials, 2023, 13(11): 2204077. |
12 | LANGDON J, MANTHIRAM A. Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes[J]. Advanced Materials, 2022, 34(41): 2205188. |
13 | XIAO Y, XU R, YAN C, et al. A toolbox of reference electrodes for lithium batteries[J]. Advanced Functional Materials, 2022, 32(13): 2108449. |
14 | BLYR A, SIGALA C, AMATUCCI G, et al. Self-discharge of LiMn2O 4/C Li-ion cells in their discharged state: Understanding by means of three-electrode measurements[J]. Journal of the Electrochemical Society, 1998, 145(1): 194-209. |
15 | GAO J H, CHEN Y Z, YANG Y, et al. Research progress of reference electrode for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10: 987. |
16 | INZELT G, LEWENSTAM A, SCHOLZ F. Handbook of reference electrodes[M]. New York: Springer, 2013. |
17 | SMITH T J, STEVENSON K J. Reference electrodes[M]//Handbook of Electrochemistry. Amsterdam: Elsevier, 2007: 73-110. |
18 | LEWANDOWSKI A, SWIDERSKA-MOCEK A. Lithium-metal potential in Li+ containing ionic liquids[J]. Journal of Applied Electrochemistry, 2010, 40(3): 515-524. |
19 | BURROWS B, JASINSKI R. The Li/Li+ reference electrode in propylene carbonate[J]. Journal of the Electrochemical Society, 1968, 115(4): 365. |
20 | JOHNSON C S, DEES D W. In Proc of the Symposium on lithium Batteries. Reference electrodes for solid polymer electrolytes[C]. United States: Battery Division of the Electrochemical Society, 1993. |
21 | KASAJIMA T, NISHIKIORI T, NOHIRA T, et al. Electrochemical window and the characteristics of ( α + β ) Al-Li alloy reference electrode for a LiBr-KBr-CsBr eutectic melt[J]. Journal of the Electrochemical Society, 2004, 151(11): E335. |
22 | ZHOU J, NOTTEN P H L. Development of reliable lithium microreference electrodes for long-term in situ studies of lithium-based battery systems[J]. Journal of the Electrochemical Society, 2004, 151(12): A2173. |
23 | GÓMEZ-CÁMER J L, NOVÁK P. Electrochemical impedance spectroscopy: Understanding the role of the reference electrode[J]. Electrochemistry Communications, 2013, 34: 208-210. |
24 | SOLCHENBACH S, PRITZL D, KONG E J Y, et al. A gold micro-reference electrode for impedance and potential measurements in lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(10): A2265-A2272. |
25 | COSTARD J, ENDER M, WEISS M, et al. Three-electrode setups for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 164(2): A80-A87. |
26 | SIMON F J, BLUME L, HANAUER M, et al. Development of a wire reference electrode for lithium all-solid-state batteries with polymer electrolyte: FEM simulation and experiment[J]. Journal of the Electrochemical Society, 2018, 165(7): A1363-A1371. |
27 | YI S Z, WANG B, CHEN Z A, et al. A study on LiFePO4/graphite cells with built-in Li4Ti5O12 reference electrodes[J]. RSC Advances, 2018, 8(33): 18597-18603. |
28 | EPDING B, BRODA A, RUMBERG B, et al. Development of durable 3-electrode lithium-ion pouch cells with LTO reference mesh: Aging and performance studies[J]. Journal of the Electrochemical Society, 2019, 166(8): A1550-A1557. |
29 | SEDLMEIER C, SCHUSTER R, SCHRAMM C, et al. A micro-reference electrode for electrode-resolved impedance and potential measurements in all-solid-state battery pouch cells and its application to the study of indium-lithium anodes[J]. Journal of the Electrochemical Society, 2023, 170(3): 030536. |
30 | WALDMANN T, HOGG B I, KASPER M, et al. Interplay of operational parameters on lithium deposition in lithium-ion cells: Systematic measurements with reconstructed 3-electrode pouch full cells[J]. Journal of the Electrochemical Society, 2016, 163(7): A1232-A1238. |
31 | NAM Y J, PARK K H, OH D Y, et al. Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells[J]. Journal of Materials Chemistry A, 2018, 6(30): 14867-14875. |
32 | WANG J K, LIU J H, WANG L, et al. The significance of imperceptible current flowing through the lithium reference electrode in lithium ion batteries[J]. Journal of Power Sources, 2022, 546: 231953. |
33 | WEN B H, DENG Z, TSAI P C, et al. Ultrafast ion transport at a cathode-electrolyte interface and its strong dependence on salt solvation[J]. Nature Energy, 2020, 5(8): 578-586. |
34 | ABRAHAM D P, POPPEN S D, JANSEN A N, et al. Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells[J]. Electrochimica Acta, 2004, 49(26): 4763-4775. |
35 | MCSHANE E J, BENEDEK P, NIEMANN V A, et al. A versatile Li0.5FePO4 reference electrode for nonaqueous electrochemical conversion technologies[J]. ACS Energy Letters, 2023, 8(1): 230-235. |
36 | PARK K, KIM D M, HA K H, et al. Correlation between redox potential and solvation structure in biphasic electrolytes for Li metal batteries[J]. Advanced Science, 2022, 9(33): 2203443. |
37 | BOYLE D T, KIM S C, OYAKHIRE S T, et al. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes[J]. Journal of the American Chemical Society, 2022, 144(45): 20717-20725. |
38 | KO S, OBUKATA T, SHIMADA T, et al. Electrode potential influences the reversibility of lithium-metal anodes[J]. Nature Energy, 2022, 7(12): 1217-1224. |
39 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
40 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
41 | KIM S C, KONG X, VILÁ R A, et al. Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability[J]. Journal of the American Chemical Society, 2021, 143(27): 10301-10308. |
42 | GALVEZ-ARANDA D E, SEMINARIO J M. Li-metal anode in dilute electrolyte LiFSI/TMP: Electrochemical stability using ab initio molecular dynamics[J]. The Journal of Physical Chemistry C, 2020, 124(40): 21919-21934. |
43 | WU J Y, YUAN L X, LI Z, et al. Air-stable means more: Designing air-defendable lithium metals for safe and stable batteries[J]. Materials Horizons, 2020, 7(10): 2619-2634. |
44 | XIAO Y, XU R, YAN C, et al. Waterproof lithium metal anode enabled by cross-linking encapsulation[J]. Science Bulletin, 2020, 65(11): 909-916. |
45 | CHO H M, PARK Y J, YEON J W, et al. In-depth investigation on two- and three-electrode impedance measurements in terms of the effect of the counter electrode[J]. Electronic Materials Letters, 2009, 5(4): 169-178. |
46 | JUAREZ-ROBLES D, CHEN C F, BARSUKOV Y, et al. Impedance evolution characteristics in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(4): A837-A847. |
47 | DOLLÉ M, ORSINI F, GOZDZ A S, et al. Development of reliable three-electrode impedance measurements in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 2001, 148(8): A851. |
48 | LEVI M D, DARGEL V, SHILINA Y, et al. Impedance spectra of energy-storage electrodes obtained with commercial three-electrode cells: Some sources of measurement artefacts[J]. Electrochimica Acta, 2014, 149: 126-135. |
49 | LA MANTIA F, WESSELLS C D, DESHAZER H D, et al. Reliable reference electrodes for lithium-ion batteries[J]. Electrochemistry Communications, 2013, 31: 141-144. |
50 | MOZHZHUKHINA N, CALVO E J. Perspective—The correct assessment of standard potentials of reference electrodes in non-aqueous solution[J]. Journal of the Electrochemical Society, 2017, 164(12): A2295-A2297. |
51 | ARMSTRONG C G, HOGUE R W, TOGHILL K E. Characterisation of the ferrocene/ferrocenium ion redox couple as a model chemistry for non-aqueous redox flow battery research[J]. Journal of Electroanalytical Chemistry, 2020, 872: 114241. |
52 | MURDOCK B E, ARMSTRONG C G, SMITH D E, et al. Misreported non-aqueous reference potentials: The battery research endemic[J]. Joule, 2022, 6(5): 928-934. |
53 | AN S J, LI J L, DANIEL C, et al. Design and demonstration of three-electrode pouch cells for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1755-A1764. |
54 | LOVERIDGE M J, LAIN M J, JOHNSON I D, et al. Towards high capacity Li-ion batteries based on silicon-graphene composite anodes and sub-micron V-doped LiFePO4 cathodes[J]. Scientific Reports, 2016, 6: 37787. |
55 | HERTLE J, WALTHER F, MOGWITZ B, et al. Miniaturization of reference electrodes for solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2023, 170(4): 040519. |
56 | ENDER M, ILLIG J, IVERS-TIFFÉE E. Three-electrode setups for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 164(2): A71-A79. |
57 | MCTURK E, BIRKL C R, ROBERTS M R, et al. Minimally invasive insertion of reference electrodes into commercial lithium-ion pouch cells[J]. ECS Electrochemistry Letters, 2015, 4(12): A145-A147. |
58 | LI Y L, HAN X B, FENG X N, et al. Errors in the reference electrode measurements in real lithium-ion batteries[J]. Journal of Power Sources, 2021, 481: 228933. |
59 | CHU Z Y, FENG X N, LIAW B, et al. Testing lithium-ion battery with the internal reference electrode: An insight into the blocking effect[J]. Journal of the Electrochemical Society, 2018, 165(14): A3240-A3248. |
60 | HOBOLD G M, LOPEZ J, GUO R, et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes[J]. Nature Energy, 2021, 6(10): 951-960. |
61 | RUTZ D, BAUER I, BRAUCHLE F, et al. Designing a reference electrode-An approach to fabricate laser perforated reference electrodes for lithium-ion batteries[J]. Electrochimica Acta, 2023, 441: 141768. |
62 | PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115-3141. |
63 | KOLESNIKOV A, KOLEK M, DOHMANN J F, et al. Galvanic corrosion of lithium-powder-based electrodes[J]. Advanced Energy Materials, 2020, 10(15): 2000017. |
64 | LIN D C, LIU Y Y, LI Y B, et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nature Chemistry, 2019, 11(4): 382-389. |
65 | LIU F, XU R, WU Y C, et al. Dynamic spatial progression of isolated lithium during battery operations[J]. Nature, 2021, 600(7890): 659-663. |
66 | SOMERVILLE L, FERRARI S, LAIN M, et al. An In-situ reference electrode insertion method for commercial 18650-type cells[J]. Batteries, 2018, 4(2): 18. |
67 | NAGASUBRAMANIAN G. Two- and three-electrode impedance studies on 18650 Li-ion cells[J]. Journal of Power Sources, 2000, 87(1/2): 226-229. |
68 | WU Q W, LU W Q, PRAKASH J. Characterization of a commercial size cylindrical Li-ion cell with a reference electrode[J]. Journal of Power Sources, 2000, 88(2): 237-242. |
69 | RODRIGUES M T F, KALAGA K, TRASK S E, et al. Fast charging of Li-ion cells: Part I. using Li/Cu reference electrodes to probe individual electrode potentials[J]. Journal of the Electrochemical Society, 2019, 166(6): A996-A1003. |
70 | RODRIGUES M T F, SON S B, COLCLASURE A M, et al. How fast can a Li-ion battery be charged? determination of limiting fast charging conditions[J]. ACS Applied Energy Materials, 2021, 4(2): 1063-1068. |
71 | CHANG G H, CHOI H U, KANG S, et al. Characterization of limiting factors of an all-solid-state Li-ion battery using an embedded indium reference electrode[J]. Ionics, 2020, 26(3): 1555-1561. |
72 | JANSEN A N, DEES D W, ABRAHAM D P, et al. Low-temperature study of lithium-ion cells using a LiySn micro-reference electrode[J]. Journal of Power Sources, 2007, 174(2): 373-379. |
73 | ITAGAKI M, HONDA K, HOSHI Y, et al. In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle[J]. Journal of Electroanalytical Chemistry, 2015, 737: 78-84. |
74 | LIU P, WANG J, HICKS-GARNER J, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses[J]. Journal of the Electrochemical Society, 2010, 157(4): A499. |
75 | DELACOURT C, RIDGWAY P L, SRINIVASAN V, et al. Measurements and simulations of electrochemical impedance spectroscopy of a three-electrode coin cell design for Li-ion cell testing[J]. Journal of the Electrochemical Society, 2014, 161(9): A1253-A1260. |
76 | MÜHLBAUER M J, PETZ D, BARAN V, et al. Inhomogeneous distribution of lithium and electrolyte in aged Li-ion cylindrical cells[J]. Journal of Power Sources, 2020, 475: 228690. |
77 | SADKOWSKI A, DIARD J P. On the Fletcher's two-terminal equivalent network of a three-terminal electrochemical cell[J]. Electrochimica Acta, 2010, 55(6): 1907-1911. |
78 | FLETCHER S. The two-terminal equivalent network of a three-terminal electrochemical cell[J]. Electrochemistry Communications, 2001, 3(12): 692-696. |
79 | LIU D Q, QIAN K, HE Y B, et al. Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2/Graphite pouch cell[J]. Electrochimica Acta, 2018, 269: 378-387. |
80 | BELT J R, BERNARDI D M, UTGIKAR V. Development and use of a lithium-metal reference electrode in aging studies of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(6): A1116-A1126. |
81 | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources, 2016, 304: 170-180. |
82 | SIEG J, BANDLOW J, MITSCH T, et al. Fast charging of an electric vehicle lithium-ion battery at the limit of the lithium deposition process[J]. Journal of Power Sources, 2019, 427: 260-270. |
83 | PRITZL D, LANDESFEIND J, SOLCHENBACH S, et al. An analysis protocol for three-electrode Li-ion battery impedance spectra: Part Ⅱ. analysis of a graphite anode cycled vs. LNMO[J]. Journal of the Electrochemical Society, 2018, 165(10): A2145-A2153. |
84 | WU M S, CHIANG P C J, LIN J C. Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements[J]. Journal of the Electrochemical Society, 2005, 152(1): A47. |
85 | YAN C, XU R, QIN J L, et al. Inside cover: 4.5 V high-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode[J]. Angewandte Chemie International Edition, 2019, 58(43): 15164. |
86 | YUE X Y, YAO Y X, ZHANG J, et al. The raw mixed conducting interphase affords effective prelithiation in working batteries[J]. Angewandte Chemie International Edition, 2022, 61(29): 202205697. |
87 | SHI P, HOU L P, JIN C B, et al. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes[J]. Journal of the American Chemical Society, 2022, 144(1): 212-218. |
88 | CAI W L, YAN C, YAO Y X, et al. Rapid lithium diffusion in Order@Disorder pathways for fast-charging graphite anodes[J]. Small Structures, 2020, 1(1): 2000010. |
89 | YAO Y X, CHEN X A, YAN C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie International Edition, 2021, 60(8): 4090-4097. |
90 | LINWANG D, TIANYU F, SHIWEI S, et al. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 12(1): 263-277. |
91 | 沈馨, 张睿, 程新兵, 等. 锂枝晶的原位观测及生长机制研究进展[J]. 储能科学与技术, 2017, 6(3): 418-432. |
SHEN X, ZHANG R, CHENG X B, et al. Recent progress on in situ observation and growth mechanism of lithium metal dendrites[J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. | |
92 | WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells - A review[J]. Journal of Power Sources, 2018, 384: 107-124. |
93 | XU L, YANG Y, XIAO Y, et al. In-situ determination of onset lithium plating for safe Li-ion batteries[J]. Journal of Energy Chemistry, 2022, 67: 255-262. |
94 | XU L, XIAO Y, YANG Y, et al. Operando quantified lithium plating determination enabled by dynamic capacitance measurement in working Li-ion batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(39): e202210365. |
95 | XU L, XIAO Y, YANG Y, et al. In situ Li-plating diagnosis for fast-charging Li-ion batteries enabled by relaxation-time detection[J]. Advanced Materials, 2023, 35(42): doi: 10.1002/adma.202301881 |
96 | XU R, ZHANG S, SHEN X, et al. Unlocking the polarization and reversibility limitations for stable low-temperature lithium metal anodes[J]. Small Structures, 2023, 4(7): doi: 10.1002/sstr.202370017 |
97 | YAO Y X, CHEN X A, YAO N, et al. Frontispiece: Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(4): 2214828. |
98 | JIN C B, YAO N, XIAO Y, et al. Taming solvent-solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries[J]. Advanced Materials, 2023, 35(3): 2208340. |
99 | AHMED Z, ROBERTS A J, AMIETSZAJEW T. Ti-based reference electrodes for inline implementation into lithium-ion pouch cells[J]. Energy Technology, 2021, 9(10): 2100602. |
100 | YU Y C, WANG S T, MA D L, et al. Recent progress on laser manufacturing of microsize energy devices on flexible substrates[J]. JOM, 2018, 70(9): 1816-1822. |
101 | PANG Y K, CAO Y T, CHU Y H, et al. Additive manufacturing of batteries[J]. Advanced Functional Materials, 2020, 30(1): 1906244. |
102 | YAO N, CHEN X A, FU Z H, et al. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chemical Reviews, 2022, 122(12): 10970-11021. |
[1] | 李晨威, 徐世国, 余海峰, 于松民, 江浩. 镁掺杂改性LiMn0.5Fe0.5PO4/C正极材料与性能研究[J]. 储能科学与技术, 2024, 13(6): 1767-1774. |
[2] | 孙琦, 彭豪, 孟庆国, 孔德凯, 冯睿. 极限工况下储能电池包热适应性[J]. 储能科学与技术, 2024, 13(6): 2039-2043. |
[3] | 张玉超, 张凤姣, 娄伟, 昝飞翔, 王琳玲, 盛安旭, 吴晓辉, 陈静. 废旧锂离子电池有价金属资源化利用的转化过程和潜在环境影响[J]. 储能科学与技术, 2024, 13(6): 1861-1870. |
[4] | 汤旭旭, 许铤, 储德韧. 镍钴锰三元锂离子电池不同电压下浮充失效机理及热安全研究[J]. 储能科学与技术, 2024, 13(6): 2044-2053. |
[5] | 钟国彬, 姚鑫, 刘永超, 侯倩, 项宏发. 锂离子电池高安全复合隔膜的挑战和未来展望[J]. 储能科学与技术, 2024, 13(6): 1794-1806. |
[6] | 唐梓巍, 师玉璞, 张雨禅, 周奕博, 杜慧玲. 基于Informer神经网络的锂离子电池容量退化轨迹预测[J]. 储能科学与技术, 2024, 13(5): 1658-1666. |
[7] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[8] | 廉高棨, 叶敏, 王桥, 李岩, 麻玉川, 孙乙丁, 杜鹏辉. 基于改进模型与优化自适应CKF的锂离子电池快速变温工况下的SOC估计[J]. 储能科学与技术, 2024, 13(5): 1667-1676. |
[9] | 吕兆财, 王玉西, 汪智涛, 孙晓辉, 李景康. 热辊压对锂离子电池正极极片性能的影响[J]. 储能科学与技术, 2024, 13(5): 1443-1450. |
[10] | 李润源, 郭傅傲, 赵钢超. 集装箱式锂离子电池储能系统消防安全早期预警方法[J]. 储能科学与技术, 2024, 13(5): 1595-1602. |
[11] | 何林, 刘江岩, 刘彬, 李夔宁, 代帅. 数据分布多样性对锂电池SOC预测的泛化影响[J]. 储能科学与技术, 2024, 13(5): 1677-1687. |
[12] | 韩亚露, 陈奕戈, 邸会芳, 林杰欢, 王振兵, 张扬, 苏方远, 陈成猛. 锂离子电池不同服役工况下失效研究进展[J]. 储能科学与技术, 2024, 13(4): 1338-1349. |
[13] | 袁悦博, 王贺武, 孔祥栋, 蒲明伟, 孙玉坤, 韩雪冰, 欧阳明高. 金属异物缺陷演化特性及其对产线 K 值的影响机制[J]. 储能科学与技术, 2024, 13(4): 1197-1204. |
[14] | 李革, 孔祥栋, 孙跃东, 陈飞, 袁悦博, 韩雪冰, 郑岳久. 基于产线大数据的锂离子电池一致性动态特性分选方法[J]. 储能科学与技术, 2024, 13(4): 1188-1196. |
[15] | 刘淳正, 来沛霈, 孙卓, 聂耳, 张哲娟. 构造凹陷的硅碳颗粒提高锂离子电池负极电化学性能[J]. 储能科学与技术, 2024, 13(4): 1302-1309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||