1 |
周卫兵, 韦钧, 李康, 等. 掺月桂酸-硬脂酸/膨胀蛭石复合相变材料建筑砂浆的制备和性能表征[J]. 储能科学与技术, 2019, 8(1): 92-97.
|
|
ZHOU W B, WEI J, LI K, et al. Preparation and characterization of building mortar with lauric acid-stearic acid/expanded vermiculite composite phase change material[J]. Energy Storage Science and Technology, 2019, 8(1): 92-97.
|
2 |
刘钊. 新型相变储能砂浆的制备和建筑力学性能研究[J]. 储能科学与技术, 2023, 12(8): 2697-2698.
|
|
LIU Z. Study on preparation and mechanical properties of new phase change energy storage mortar[J]. Energy Storage Science and Technology, 2023, 12(8): 2697-2698.
|
3 |
MA C Y, ZHANG Y, CHEN X F, et al. Experimental study of an enhanced phase change material of paraffin/expanded graphite/nano-metal particles for a personal cooling system[J]. Materials, 2020, 13(4): 980.
|
4 |
刘丽辉, 莫雅菁, 孙小琴, 等. 纳米增强型复合相变材料的传热特性[J]. 储能科学与技术, 2020, 9(4): 1105-1112.
|
|
LIU L H, MO Y J, SUN X Q, et al. Thermal behavior of the nanoenhanced phase change materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112.
|
5 |
TARIQ S L, ALI H M, AKRAM M A, et al. Nanoparticles enhanced phase change materials (NePCMs)-A recent review[J]. Applied Thermal Engineering, 2020, 176: 115305.
|
6 |
DIANI A, NONINO C, ROSSETTO L. Melting of phase change materials inside periodic cellular structures fabricated by additive manufacturing: Experimental results and numerical simulations[J]. Applied Thermal Engineering, 2022, 215: 118969.
|
7 |
KANT K, BIWOLE P H, SHUKLA A, et al. Heat transfer and energy storage performances of phase change materials encapsulated in honeycomb cells[J]. Journal of Energy Storage, 2021, 38: 102507.
|
8 |
ZHENG X J, GAO X N, HUANG Z W, et al. Form-stable paraffin/graphene aerogel/copper foam composite phase change material for solar energy conversion and storage[J]. Solar Energy Materials and Solar Cells, 2021, 226: 111083.
|
9 |
DIANI A, MORO L, ROSSETTO L. Melting of paraffin waxes embedded in a porous matrix made by additive manufacturing[J]. Applied Sciences, 2021, 11(12): 5396.
|
10 |
QU Y, CHEN J Y, LIU L F, et al. Study on properties of phase change foam concrete block mixed with paraffin/fumed silica composite phase change material[J]. Renewable Energy, 2020, 150: 1127-1135.
|
11 |
LIU J H, FAN Y N, XIE Q M. An experimental study on the thermal performance of mixed phase change materials-based battery cooling system[J]. Journal of Energy Storage, 2022, 46: 103839.
|
12 |
WANG S M, MATIAŠOVSKÝ P, MIHÁLKA P, et al. Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard[J]. Energy and Buildings, 2018, 159: 419-425.
|
13 |
DUAN, XIONG, YANG. Melting behavior of phase change material in honeycomb structures with different geometrical cores[J]. Energies, 2019, 12(15): 2920.
|
14 |
LAI C M, HOKOI S. Thermal performance of an aluminum honeycomb wallboard incorporating microencapsulated PCM[J]. Energy and Buildings, 2014, 73: 37-47.
|
15 |
CIHAN E, BERENT H K, DEMIR H, et al. Entropy analysis and thermal energy storage performance of PCM in honeycomb structure: Effects of materials and dimensions[J]. Thermal Science and Engineering Progress, 2023, 38: 101668.
|
16 |
LIU F, WANG J F, LIU Y Q, et al. Natural convection characteristics of honeycomb fin with different hole cells for battery phase-change material cooling systems[J]. Journal of Energy Storage, 2022, 51: 104578.
|
17 |
CAO S H, WANG H. Characterization of size effect of natural convection in melting process of phase change material in square cavity[J]. Chinese Physics B, 2021, 30(10): 104403.
|
18 |
BIWOLE P H, GROULX D, SOUAYFANE F, et al. Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure[J]. International Journal of Thermal Sciences, 2018, 124: 433-446.
|
19 |
SHEIKHOLESLAMI M. Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles[J]. Journal of Energy Storage, 2022, 52: 104954.
|
20 |
WANG H, QIN Q. Numerical analysis of enhanced heat transfer in the metal foam system filled with phase change materials[J]. International Journal Engineering and Information Systems, 2017, 1(9): 129-142.
|