1 |
GRIFFIN P W, HAMMOND G P. Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective[J]. Applied Energy, 2019, 249: 109-125.
|
2 |
LIU F, TAIT S, SCHELLART A, et al. Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109767.
|
3 |
WANG K, WANG Y X, LI K, et al. Energy poverty in China: An index based comprehensive evaluation[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 308-323.
|
4 |
IDDRISU I, BHATTACHARYYA S C. Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 513-530.
|
5 |
SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345.
|
6 |
LI X X, LI Q, HU J, et al. Core-sheath phase change fibers via coaxial wet spinning for solar energy active storage[J]. Composites Part B: Engineering, 2022, 247: 110346.
|
7 |
FARID M M, KHUDHAIR A M, ALI K RAZACK S, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion and Management, 2004, 45(9/10): 1597-1615.
|
8 |
VERMA P, SINGAL S K. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material[J]. Renewable and Sustainable Energy Reviews, 2008, 12(4): 999-1031.
|
9 |
RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571.
|
10 |
NIE C D, DENG S X, LIU J W. Effects of fins arrangement and parameters on the consecutive melting and solidification of PCM in a latent heat storage unit[J]. Journal of Energy Storage, 2020, 29: 101319.
|
11 |
MYERS P D, ALAM T E, KAMAL R, et al. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer[J]. Applied Energy, 2016, 165: 225-233.
|
12 |
CAO Y, WENG M M, MAHMOUD M H H, et al. Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1253-1267.
|
13 |
SONG S K, AI H, ZHU W T, et al. Carbon aerogel based composite phase change material derived from kapok fiber: Exceptional microwave absorbility and efficient solar/magnetic to thermal energy storage performance[J]. Composites Part B: Engineering, 2021, 226: 109330.
|
14 |
LI C, LI Q, DING Y L. Investigation on the effective thermal conductivity of carbonate salt based composite phase change materials for medium and high temperature thermal energy storage[J]. Energy, 2019, 176: 728-741.
|
15 |
HUANG X, LIN Y X, ALVA G, et al. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2017, 170: 68-76.
|
16 |
KHARE S, DELL'AMICO M, KNIGHT C, et al. Selection of materials for high temperature latent heat energy storage[J]. Solar Energy Materials and Solar Cells, 2012, 107: 20-27.
|
17 |
WANG Z Y, WANG H, LI X B, et al. Aluminum and silicon based phase change materials for high capacity thermal energy storage[J]. Applied Thermal Engineering, 2015, 89: 204-208.
|
18 |
FUKAHORI R, NOMURA T, ZHU C Y, et al. Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage[J]. Applied Energy, 2016, 170: 324-328.
|
19 |
LAO X B, XU X H, WU J F, et al. High-temperature alloy/honeycomb ceramic composite materials for solar thermal storage applications: Preparation and stability evaluation[J]. Ceramics International, 2017, 43(5): 4583-4593.
|
20 |
华建社, 王建宏, 陈海波, 等. 粉煤灰制备高温复合相变蓄热材料的可行性研究[J]. 热加工工艺, 2013, 42(12): 96-98, 101.
|
|
HUA J S, WANG J H, CHEN H B, et al. Availability of preparation process of high temperature fly ash based phase change composite[J]. Hot Working Technology, 2013, 42(12): 96-98, 101.
|
21 |
朱桂花, 吕硕, 韩金鹏, 等. 球形粉煤灰基高温定形复合相变蓄热材料的制备与性能[J]. 煤炭转化, 2018, 41(2): 73-79.
|
|
ZHU G H, LYU S, HAN J P, et al. Preparation and properties of spherical fly ash based form-stable composite phase change material for high temperature thermal storage[J]. Coal Conversion, 2018, 41(2): 73-79.
|
22 |
韩金鹏, 朱桂花, 吕硕, 等. 相变介质粒径对粉煤灰基高温定形复合相变材料蓄热性能的影响[J]. 煤炭转化, 2019, 42(1): 78-86.
|
|
HAN J P, ZHU G H, LYU S, et al. Effects of particle size of phase change medium on thermal storage performance of fly ash-based high temperature formstable composite phase change material[J]. Coal Conversion, 2019, 42(1): 78-86.
|
23 |
关江哲, 朱桂花, 吕硕, 等. 氧化钙对金属/粉煤灰基高温定形复合相变材料蓄热性能的影响[J]. 硅酸盐通报, 2020, 39(9): 3008-3013, 3022.
|
|
GUAN J Z, ZHU G H, LYU S, et al. Effect of calcium oxide on thermal storage performance of metal/fly ash-based high temperature form-stable composite phase change material[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 3008-3013, 3022.
|
24 |
刘汉昌, 朱桂花, 吕硕, 等. 相变介质组成对粉煤灰基高温定形复合相变材料蓄热性能的影响[J]. 硅酸盐通报, 2022, 41(2): 597-606.
|
|
LIU H C, ZHU G H, LYU S, et al. Influence of phase change medium composition on heat storage performance of fly ash-based high-temperature shaped composite phase change materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 597-606.
|
25 |
鲁秀国, 徐智昕, 揭珊. 粉煤灰基吸附剂处理染料废水的研究进展[J]. 水处理技术, 2023, 49(5): 6-10.
|
|
LU X G, XU Z X, JIE S. Research progress on the treatment of dye wastewater by fly ash-based adsorbent[J]. Technology of Water Treatment, 2023, 49(5): 6-10.
|
26 |
WOOLARD C D, STRONG J, ERASMUS C R. Evaluation of the use of modified coal ash as a potential sorbent for organic waste streams[J]. Applied Geochemistry, 2002, 17(8): 1159-1164.
|