1 |
朱芳啟, 江龙, 王丽伟, 等. MnCl2-CaCl2-NH3再吸附温度提升系统储能特性[J]. 化工学报, 2016, 67(4): 1453-1458.
|
|
ZHU F Q, JIANG L, WANG L W, et al. Energy storage properties of MnCl2-CaCl2-NH3 resorption temperature-lifting system[J]. CIESC Journal, 2016, 67(4): 1453-1458.
|
2 |
JIANG Y F, LIU M, SUN Y P. Review on the development of high temperature phase change material composites for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110164.
|
3 |
LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: 113806.
|
4 |
YU Q H, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237: 367-377.
|
5 |
LI Q, CONG L, ZHANG X S, et al. Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 211: 110511.
|
6 |
ZHU J Q, LI R G, ZHOU W B, et al. Fabrication of Al2O3-NaCl composite heat storage materials by one-step synthesis method[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2016, 31(5): 950-954.
|
7 |
SARI A, BICER A, AL-SULAIMAN F A, et al. Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties[J]. Energy and Buildings, 2018, 164: 166-175.
|
8 |
XU G Z, LENG G H, YANG C Y, et al. Sodium nitrate-diatomite composite materials for thermal energy storage[J]. Solar Energy, 2017, 146: 494-502.
|
9 |
LI C C, ZHANG B, LIU Q X. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29: 101339.
|
10 |
闫嘉森, 韩现英, 党兆涵, 等. 石蜡/膨胀石墨/石墨烯复合相变储热材料的制备及性能[J]. 高等学校化学学报, 2022, 43(6): 326-332.
|
|
YAN J S, HAN X Y, DANG Z H, et al. Preparation and performance of paraffin/expanded graphite/graphene composite phase change heat storage material[J]. Chemical Journal of Chinese Universities, 2022, 43(6): 326-332.
|
11 |
JIANG Z, JIANG F, LI C A, et al. A form stable composite phase change material for thermal energy storage applications over 700 ℃[J]. Applied Sciences, 2019, 9(5): 814.
|
12 |
卢昀坤, 唐宪友, 尹航, 等. 高温熔盐/陶瓷复合相变储热材料表面封装及防泄漏性能研究[J]. 无机盐工业, 2023: doi: 10.19964/j.issn. 1006-4990.2023-0158.
|
13 |
MEMON S, LIAO W Y, YANG S Q, et al. Development of composite PCMs by incorporation of paraffin into various building materials[J]. Materials, 2015, 8(2): 499-518.
|
14 |
SARI A, BIÇER A. Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs[J]. Energy and Buildings, 2012, 51: 73-83.
|
15 |
DENG J H, LI W B, JIANG D H. Study on binary fatty acids/sepiolite composite phase change material[J]. Advanced Materials Research, 2011, 374/375/376/377: 807-810.
|
16 |
LIU R P, ZHANG F, SU W M, et al. Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2015, 134: 268-274.
|
17 |
LI C, HAN L, LENG G Y, et al. Nitrate salt-halloysite nanotube (HNT) composite phase change materials for thermal energy storage: The feasibility of material fabrication by using HNT as skeleton substance and its thermal properties[J]. Solar Energy Materials and Solar Cells, 2023(263): 112565.
|
18 |
林伯, 句子涵, 胡定华, 等. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(S1): 29-33.
|
|
LIN B, GOU Z H, HU D H, et al. Research on thermal performance of high thermal conductivity composite phase change material based on foamed copper framework material[J]. Materials Reports, 2022, 36(S1): 29-33.
|
19 |
YAN X X, ZHAO H B, FENG Y H, et al. Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials[J]. Composites Part B: Engineering, 2022, 228: 109435.
|
20 |
WANG T Y, ZHANG T Y, XU G Z, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110328.
|
21 |
王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3): 332-340.
|
|
WANG Y, HUANG Y, YAO H, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 332-340.
|
22 |
XIONG Y X, WANG H X, WU Y T, et al. Carbide slag based shape-stable phase change materials for waste recycling and thermal energy storage[J]. Journal of Energy Storage, 2022, 50: 104256.
|
23 |
XIONG Y X, TIAN X, LI X, et al. Effects of expanded graphite on NaNO3/semi-coke ash shape-stable phase change composites for thermal energy storage[J]. Journal of Energy Storage, 2023, 72: 108648.
|
24 |
XIONG Y X, YAO C H, REN J, et al. Waste semicoke ash utilized to fabricate shape-stable phase change composites for building heating and cooling[J]. Construction and Building Materials, 2022, 361: 129638.
|
25 |
XIONG Y X, SONG C Y, REN J, et al. Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage[J]. Process Safety and Environmental Protection, 2022, 162: 346-356.
|
26 |
LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.
|
27 |
XIONG Y X, SUN M Y, WU Y T, et al. Effects of synthesis methods on thermal performance of nitrate salt nanofluids for concentrating solar power[J]. Energy & Fuels, 2020, 34(9): 11606-11619.
|
28 |
ZHAO T K, SHE S F, JI X L, et al. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries[J]. Scientific Reports, 2016, 6: 33833.
|
29 |
RADHAKRISHNAN R, GUBBINS K E. Free energy studies of freezing in slit pores: An order-parameter approach using Monte Carlo simulation[J]. Molecular Physics, 1999, 96(8): 1249-1267.
|
30 |
张东, 吴科如. 孔结构对有机相变物质相变行为的调节作用[J]. 同济大学学报(自然科学版), 2004(9): 1163-1167.
|
|
ZHANG D, WU K R. Tuning effect of porous structure on phase changing behavior of organic phase changing matters[J]. Journal of Tongji University (Natural Science), 2004(9): 1163-1167.
|
31 |
LI R G, ZHU J Q, ZHOU W B, et al. Thermal compatibility of sodium nitrate/expanded perlite composite phase change materials[J]. Applied Thermal Engineering, 2016, 103: 452-458.
|