储能科学与技术 ›› 2023, Vol. 12 ›› Issue (12): 3852-3872.doi: 10.19799/j.cnki.2095-4239.2023.0543
张岩岩1(), 熊亚选2(), 陈亚辉1, 全瑞星1, 程广贵1, 赵彦琦1,3(), 丁玉龙4
收稿日期:
2023-08-11
修回日期:
2023-09-13
出版日期:
2023-12-05
发布日期:
2023-12-09
通讯作者:
熊亚选,赵彦琦
E-mail:2222103124@stmail.ujs.edu.cn;xiongyaxuan@bucea.edu.cn;hazhaoyq@126.com
作者简介:
张岩岩(1998—),男,硕士研究生,从事热能存储技术研究,E-mail:2222103124@stmail.ujs.edu.cn;
基金资助:
Yanyan ZHANG1(), Yaxuan XIONG2(), Yahui CHEN1, Ruixing QUAN1, Guanggui CHENG1, Yanqi ZHAO1,3(), Yulong DING4
Received:
2023-08-11
Revised:
2023-09-13
Online:
2023-12-05
Published:
2023-12-09
Contact:
Yaxuan XIONG, Yanqi ZHAO
E-mail:2222103124@stmail.ujs.edu.cn;xiongyaxuan@bucea.edu.cn;hazhaoyq@126.com
摘要:
相变填充床储热系统可实现热能的回收利用以及新能源高效收集,对推进碳中和具有重要意义。针对相变填充床储热系统复杂瞬态性质,本文首先对用于预测系统热性能的数值模型进行了总结。随后面向相变填充床储热系统性能评估,介绍了相变填充床储热系统性能评估方法,指出了?效率分析相比于能量效率分析的优点以及区别。此外,重点总结与分析相变填充床储热系统性能优化方法,表明高径比大于1的圆柱形储罐通常是优选的;根据实际应用场景选择,传热流体一般采用导热油、熔盐、空气;定型复合相变材料更具应用前景。然后介绍了相变填充床储热系统在工业余热回收及高效利用太阳能方面的应用。在文章最后,展望了相变填充床储热系统在储罐设计、储热单元设计、运行策略、高温环境等方面的未来发展,以及相变填充床储热系统的成本效益,为促进相变填充床储热系统的发展和实际应用提供借鉴。
中图分类号:
张岩岩, 熊亚选, 陈亚辉, 全瑞星, 程广贵, 赵彦琦, 丁玉龙. 相变填充床储热系统研究与应用进展[J]. 储能科学与技术, 2023, 12(12): 3852-3872.
Yanyan ZHANG, Yaxuan XIONG, Yahui CHEN, Ruixing QUAN, Guanggui CHENG, Yanqi ZHAO, Yulong DING. Recent progress in the investigation and application of packed-bed latent thermal energy storage systems[J]. Energy Storage Science and Technology, 2023, 12(12): 3852-3872.
表1
储罐几何形状的优化设计"
参考文献 | 罐体形状 | 隔热条件 | 主要优化手段 | 效率 | 工作温度/℃ |
---|---|---|---|---|---|
Cárdenas等[ | 圆柱形 | 忽略通过壁面热损失 | 增加额外储热材料质量,改变纵横比,改变储热单元直径大小 | 98.24% | 549.85 |
Zanganeh等[ | 截锥形 | 储罐由混凝土制成,储罐被埋在地下 | 通过锥形状减小储罐岩石热膨胀引起的热棘轮效应,降低填充床顶部热损失 | 95% | 650 |
Yang等[ | 圆柱形 | 绝热壁面和非绝热壁面两种不同边界条件对比 | 通过对比填充床绝热和非绝热的壁面边界条件,来研究填充床内部温度分布 | 90% | 250 |
Xu等[ | 圆柱形 | 双隔热层 | 对填充床外壁面进行隔热设计 | 90% | 390 |
Vannerem等[ | 圆柱形 | 20 mm岩棉进行隔热 | 将均匀型、中心型、外围型三种分流器进行对比研究,发现均匀型分流器径向温度分布最均匀 | 81% | 100~140 |
Li等[ | 长方体形 | 系统外表面绝热 | 在填充床内使用复合相变材料砖布置出曲折流通通道 | 增加了41% | 546.85 |
Trevisan等[ | 圆柱形 | 通过陶瓷纤维毯隔热 | 通过内部管道实现了传热流体的径向流动 | 70% | 600 |
Dong等[ | 圆柱形 | 系统外表面绝热 | 储热单元的尺寸沿轴向和径向变化,构建具有仿生静脉分级结构的填充床储热系统 | — | 326 |
表2
不同文献中传热流体的选择"
参考文献 | 传热流体 | 工作温度下比热容Cp /[J/(kg·K)] | 工作温度/K |
---|---|---|---|
Bruch等[ | 导热油 | 3212 | 623.15 |
Liu等[ | 导热油 | 2515 | 823.15 |
Hoffmann等[ | Caloria HT 43/日光盐 | 3506/1526 | 483.15 |
Zanganeh等[ | 空气 | 1124 | 923.15 |
Cascetta等[ | 空气 | 1047 | 573.15 |
Singh等[ | 空气 | 1005 | 323.15 |
Cascetta等[ | 空气/油/熔盐 | 823.15/673.15/823.15 | |
Niedermeier等[ | 液态金属铅铋 | 146 | 673.15 |
Wang等[ | 二元硝酸盐(NaNO3+KNO3) | 1318 | 723 |
Bozorg等[ | 油- | 1961/2132 | 500/600 |
表3
储热单元几何形状优化设计"
参考文献 | 封装结构 | 封装材料 | 相变材料 | 相变材料潜热ΔHm /(kJ/kg) |
---|---|---|---|---|
Wei等[ | 球体,圆柱体,板状和管状 | 不锈钢 | 石蜡FNP-0090 | 216.7 |
Wu等[ | 球体 | 高密度聚乙烯 | 肉豆蔻酸 | 186.6 |
Pakrouh等[ | 球体 | 不锈钢 | 石蜡 | 243.5 |
Tan[ | 球体 | 玻璃 | 正十八烷 | 226 |
Sun等[ | 球体 | 不锈钢 | 棕榈酸/膨胀石墨/碳纤维复合相变材料 | 198.17 |
Alawadhi等[ | 圆锥体 | 金属箔 | 正二十烷 | 241 |
Liu等[ | 圆柱体 | 不锈钢 | 十二酸 | 182 |
Wang等[ | 仿生学肺泡结构 | |||
Dong等[ | 仿生椭圆形结构 | 树脂 | 正十八烷 | 243.5 |
Cheng等[ | 仿生红细胞结构 | 尼龙 | 癸酸-月桂酸-棕榈酸共晶混合物 | 120.2 |
Mohaghegh等[ | 梨形结构 | 正十八烷 | 243.5 | |
Tang等[ | 中空通道球形结构 | 不锈钢 | 石蜡 | 166.3 |
Sun等[ | 环形翅片双层球形结构 | 不锈钢 | 棕榈酸 | 185.4 |
Hu等[ | 弯曲储热单元 | 月桂酸 | 187.21 |
1 | ELLABBAN O, ABU-RUB H, BLAABJERG F. Renewable energy resources: Current status, future prospects and their enabling technology[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 748-764. |
2 | PELAY U, LUO L G, FAN Y L, et al. Thermal energy storage systems for concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 82-100. |
3 | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. |
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. | |
4 | TAYLOR P G, BOLTON R, STONE D, et al. Developing pathways for energy storage in the UK using a coevolutionary framework[J]. Energy Policy, 2013, 63: 230-243. |
5 | GUR I, SAWYER K, PRASHER R. Searching for a better thermal battery[J]. Science, 2012, 335(6075): 1454-1455. |
6 | ZHAO Y Q, ZHANG T T, SUN L, et al. Energy storage for black start services: A review[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 691-704. |
7 | GAUTAM A, SAINI R P. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications[J]. Solar Energy, 2020, 207: 937-956. |
8 | GIL A, ARAUJO J. AspectKAOS: Integrating early-aspects into KAOS[C]//Proceedings of the 15th workshop on Early aspects. 3 March 2009, Charlottesville, Virginia, USA. New York: ACM, 2009: 31-36. |
9 | PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. |
10 | GAUTAM A, SAINI R P. A review on technical, applications and economic aspect of packed bed solar thermal energy storage system[J]. Journal of Energy Storage, 2020, 27: 101046. |
11 | DE GRACIA A, CABEZA L F. Numerical simulation of a PCM packed bed system: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 1055-1063. |
12 | SCHUMANN T E W. Heat transfer: A liquid flowing through a porous prism[J]. Journal of the Franklin Institute, 1929, 208(3): 405-416. |
13 | 赵炳晨. 熔盐单罐填充床蓄热系统性能分析及优化设计研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2018. |
ZHAO B C. Performance analysis and optimization design of single-tank packed bed heat storage system with molten salt[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2018. | |
14 | HE X B, QIU J, WANG W, et al. A review on numerical simulation, optimization design and applications of packed-bed latent thermal energy storage system with spherical capsules[J]. Journal of Energy Storage, 2022, 51: 104555. |
15 | VORTMEYER D, SCHAEFER R J. Equivalence of one- and two-phase models for heat transfer processes in packed beds: One dimensional theory[J]. Chemical Engineering Science, 1974, 29(2): 485-491. |
16 | ESENCE T, BRUCH A, MOLINA S, et al. A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems[J]. Solar Energy, 2017, 153: 628-654. |
17 | BEASLEY D E, CLARK J A. Transient response of a packed bed for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 1984, 27(9): 1659-1669. |
18 | ISMAIL K A R, HENRı́QUEZ J R. Numerical and experimental study of spherical capsules packed bed latent heat storage system[J]. Applied Thermal Engineering, 2002, 22(15): 1705-1716. |
19 | WU M, XU C, HE Y L. Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules[J]. Applied Thermal Engineering, 2016, 93: 1061-1073. |
20 | XU C, WANG Z F, HE Y L, et al. Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system[J]. Applied Energy, 2012, 92: 65-75. |
21 | WU M, XU C, HE Y L. Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules[J]. Applied Energy, 2014, 121: 184-195. |
22 | XIA L, ZHANG P, WANG R Z. Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model[J]. Energy, 2010, 35(5): 2022-2032. |
23 | 赵耀. 相变材料及梯级系统传热储热特性的理论与实验研究[D]. 上海: 上海交通大学, 2018. |
ZHAO Y. Theoretical and experimental study on heat transfer and heat storage characteristics of phase change materials and cascade systems[D]. Shanghai: Shanghai Jiao Tong University, 2018. | |
24 | LI G. Sensible heat thermal storage energy and exergy performance evaluations[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 897-923. |
25 | YANG Z, GARIMELLA S V. Thermal analysis of solar thermal energy storage in a molten-salt thermocline[J]. Solar Energy, 2010, 84(6): 974-985. |
26 | GUO W M, HE Z Y, ZHANG Y T, et al. Thermal performance of the packed bed thermal energy storage system with encapsulated phase change material[J]. Renewable Energy, 2022, 196: 1345-1356. |
27 | LIU Y Q, ZHANG J Y, LI H J, et al. Numerical study on stratification performance of cascaded three-layered packed-bed in the thermal storage process[J]. Applied Thermal Engineering, 2023, 219: doi: 10.1016/j.applthermaleng.2022.119669. |
28 | GUO W M, HE Z Y, MAWIRE A, et al. Parametric investigation of charging and discharging performances of a cascaded packed bed thermal energy storage system[J]. Journal of Energy Storage, 2023, 57: 106229. |
29 | SCHWARZMAYR P, BIRKELBACH F, WALTER H, et al. Standby efficiency and thermocline degradation of a packed bed thermal energy storage: An experimental study[J]. Applied Energy, 2023, 337: 120917. |
30 | XIE B S, BAUDIN N, SOTO J, et al. Wall impact on efficiency of packed-bed thermocline thermal energy storage system[J]. Energy, 2022, 247: 123503. |
31 | WANG W, SHUAI Y, QIU J, et al. Effect of steady-state and unstable-state inlet boundary on the thermal performance of packed-bed latent heat storage system integrated with concentrating solar collectors[J]. Renewable Energy, 2022, 183: 251-266. |
32 | CÁRDENAS B, DAVENNE T R, ROUSE J P, et al. Effect of design parameters on the exergy efficiency of a utility-scale packed bed[J]. Journal of Energy Storage, 2018, 18: 267-284. |
33 | SUN B, LIU Z, JI X, et al. Thermal energy storage characteristics of packed bed encapsulating spherical capsules with composite phase change materials[J]. Applied Thermal Engineering, 2022, 201: doi: 10.1016/j.applthermaleng.2021.117659. |
34 | KUMAR A, SAHA S K. Thermal and structural characterizations of packed bed thermal energy storage with cylindrical micro-encapsulated phase change materials[J]. Journal of Energy Storage, 2022, 48: 103948. |
35 | GAO L, DONG L W, LIU Z Z, et al. Thermal performance analysis and multi-objective optimization of thermal energy storage unit with cascaded packed bed in a solar heating system[J]. Applied Thermal Engineering, 2023, 219: 119416. |
36 | ZHU Y L, WANG D X, LI P Y, et al. Optimization of exergy efficiency of a cascaded packed bed containing variable diameter particles[J]. Applied Thermal Engineering, 2021, 188: 116680. |
37 | LI C, LI Q, DING Y. Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials[J]. Applied Energy, 2019, 247: 374-388. |
38 | ZANGANEH G, PEDRETTI A, ZAVATTONI S, et al. Packed-bed thermal storage for concentrated solar power-Pilot-scale demonstration and industrial-scale design[J]. Solar Energy, 2012, 86(10): 3084-3098. |
39 | YANG Z, GARIMELLA S V. Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions[J]. Applied Energy, 2010, 87(11): 3322-3329. |
40 | VANNEREM S, NEVEU P, FALCOZ Q. Experimental investigation of the impact of fluid distribution on thermocline storage performance[J]. Journal of Energy Storage, 2022, 52: 104864. |
41 | TREVISAN S, WANG W J, GUEDEZ R, et al. Experimental evaluation of a high-temperature radial-flow packed bed thermal energy storage under dynamic mass flow rate[J]. Journal of Energy Storage, 2022, 54: 105236. |
42 | DONG Y, ZHANG X P, WANG F Q, et al. Numerical study on the thermal performance analysis of packed-bed latent heat thermal storage system with biomimetic vein hierarchical structure[J]. International Journal of Green Energy, 2022, 19(6): 592-602. |
43 | BELLENOT G, BENTIVOGLIO F, MARTY P, et al. Thermocline energy storage: Influence of fluid distribution into porous media[C]//SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems", "AIP Conference Proceedings. Casablanca, Morocco. AIP Publishing, 2019. |
44 | LOU W R, FAN Y L, LUO L G. Single-tank thermal energy storage systems for concentrated solar power: Flow distribution optimization for thermocline evolution management[J]. Journal of Energy Storage, 2020, 32: 101749. |
45 | LIU H L, LI B T, ZHANG L K, et al. Optimizing heat-absorption efficiency of phase change materials by mimicking leaf vein morphology[J]. Applied Energy, 2020, 269: 114982. |
46 | BRUCH A, FOURMIGUÉ J F, COUTURIER R. Experimental and numerical investigation of a pilot-scale thermal oil packed bed thermal storage system for CSP power plant[J]. Solar Energy, 2014, 105: 116-125. |
47 | MAWIRE A, MCPHERSON M, VAN DEN HEETKAMP R R J, et al. Experimental volumetric heat transfer characteristics between oil and glass pebbles in a small glass tube storage[J]. Energy, 2010, 35(3): 1256-1263. |
48 | WU S M, FANG G Y. Dynamic performances of solar heat storage system with packed bed using myristic acid as phase change material[J]. Energy and Buildings, 2011, 43(5): 1091-1096. |
49 | KURAVI S, TRAHAN J, GOSWAMI Y, et al. Investigation of a high-temperature packed-bed sensible heat thermal energy storage system with large-sized elements[J]. Journal of Solar Energy Engineering, 2013, 135(4): 041008. |
50 | CASCETTA M, CAU G, PUDDU P, et al. Experimental investigation of a packed bed thermal energy storage system[J]. Journal of Physics: Conference Series, 2015, 655: 012018. |
51 | SINGH H, SAINI R P, SAINI J S. Performance of a packed bed solar energy storage system having large sized elements with low void fraction[J]. Solar Energy, 2013, 87: 22-34. |
52 | CASCETTA M, CAU G, PUDDU P, et al. Numerical investigation of a packed bed thermal energy storage system with different heat transfer fluids[J]. Energy Procedia, 2014, 45: 598-607. |
53 | NIEDERMEIER K, MÜLLER-TREFZER F, MAROCCO L. Parametric study of filler size and properties for a liquid-metal thermal energy storage[J]. Applied Thermal Engineering, 2022, 212: 118568. |
54 | WANG G, LIU Z J, HAN W, et al. Influence investigation of hot molten salt temperature on operation and mechanical behaviours of latent heat storage tank[J]. Case Studies in Thermal Engineering, 2021, 28: 101522. |
55 | LIU Z K, WANG J Y, WANG Z X, et al. Numerical analysis on lunar heat storage system: Multi-objective optimization, heat storage capacity, and thermal insulation performance[J]. Journal of Energy Storage, 2023, 59: 106508. |
56 | HOFFMANN J F, FASQUELLE T, GOETZ V, et al. A thermocline thermal energy storage system with filler materials for concentrated solar power plants: Experimental data and numerical model sensitivity to different experimental tank scales[J]. Applied Thermal Engineering, 2016, 100: 753-761. |
57 | BOZORG M V, HOSSEIN DORANEHGARD M, HONG K, et al. CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil-Al2O3 nanofluid[J]. Renewable Energy, 2020, 145: 2598-2614. |
58 | TANG Y, WANG Z C, ZHOU J Z, et al. Heat transfer analysis of hollow channel in phase change materials spherical capsule[J]. Applied Thermal Engineering, 2023, 219: 119390. |
59 | KOŽELJ R, MLAKAR U, ZAVRL E, et al. An experimental and numerical analysis of an improved thermal storage tank with encapsulated PCM for use in retrofitted buildings for heating[J]. Energy and Buildings, 2021, 248: 111196. |
60 | LIU M, SAMAN W, BRUNO F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2118-2132. |
61 | LI C, LI Q, DING Y L. Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: From component to device level performance through modelling[J]. Renewable Energy, 2019, 140: 140-151. |
62 | LI M J, JIN B, MA Z, et al. Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material[J]. Applied Energy, 2018, 221: 1-15. |
63 | WEI J J, KAWAGUCHI Y, HIRANO S, et al. Study on a PCM heat storage system for rapid heat supply[J]. Applied Thermal Engineering, 2005, 25(17/18): 2903-2920. |
64 | KOIDE H, KURNIAWAN A, TAKAHASHI T, et al. Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material[J]. Energy, 2022, 238: 121746. |
65 | PAKROUH R, HOSSEINI M J, RANJBAR A A, et al. Thermodynamic analysis of a packed bed latent heat thermal storage system simulated by an effective packed bed model[J]. Energy, 2017, 140: 861-878. |
66 | TAN F L. Constrained and unconstrained melting inside a sphere[J]. International Communications in Heat and Mass Transfer, 2008, 35(4): 466-475. |
67 | FARID M M, KHUDHAIR A M, ALI K RAZACK S, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion and Management, 2004, 45(9/10): 1597-1615. |
68 | SUN B Z, SUN M, GAO L, et al. Thermal performance analysis and optimization of a double-layer spherical phase-change material capsule with annular fins[J]. Journal of Energy Storage, 2023, 57: 106280. |
69 | ABDULATEEF A M, MAT S, ABDULATEEF J, et al. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1620-1635. |
70 | XU T H, HUMIRE E N, TREVISAN S, et al. Experimental and numerical investigation of a latent heat thermal energy storage unit with ellipsoidal macro-encapsulation[J]. Energy, 2022, 238: 121828. |
71 | HU Z P, LI A G, GAO R, et al. A comparison study on melting inside the rectangular and curved unit with a vertical heating wall[J]. Journal of Thermal Analysis and Calorimetry, 2015, 122(2): 831-842. |
72 | CHENG X W, ZHAI X Q. Thermal performance analysis of a novel PCM capsule in red blood cell shape[J]. Applied Thermal Engineering, 2017, 120: 130-137. |
73 | TIAN Y, LIU X L, ZHENG H B, et al. Artificial mitochondrion for fast latent heat storage: Experimental study and lattice Boltzmann simulation[J]. Energy, 2022, 245: 123296. |
74 | WANG F Q, DONG Y, LI Y, et al. Numerical study on the thermal performance of packed-bed latent heat thermal energy storage system with biomimetic alveoli structure capsule[J]. Science China Technological Sciences, 2021, 64(7): 1544-1554. |
75 | DONG Y, WANG F Q, ZHANG Y Q, et al. Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure[J]. Energy, 2022, 238: 121830. |
76 | MOHAGHEGH M R, ALOMAIR Y, ALOMAIR M, et al. Melting of PCM inside a novel encapsulation design for thermal energy storage system[J]. Energy Conversion and Management: X, 2021, 11: 100098. |
77 | ALAWADHI E M, ALQALLAF H J. Building roof with conical holes containing PCM to reduce the cooling load: Numerical study[J]. Energy Conversion and Management, 2011, 52(8/9): 2958-2964. |
78 | LIU C, GROULX D. Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system[J]. International Journal of Thermal Sciences, 2014, 82: 100-110. |
79 | MA F, ZHANG P. Investigation on the performance of a high-temperature packed bed latent heat thermal energy storage system using Al-Si alloy[J]. Energy Conversion and Management, 2017, 150: 500-514. |
80 | 侯宜成. 高温定型复合相变储热材料的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
HOU Y C. Study on preparation and properties of composite phase change heat storage materials with high temperature setting[D].Harbin: Harbin Institute of Technology, 2022. | |
81 | GE Z W, YE F, CAO H, et al. Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage[J]. Particuology, 2014, 15: 77-81. |
82 | JIANG F, GE Z W, LING X, et al. Improved thermophysical properties of shape-stabilized NaNO3 using a modified diatomite-based porous ceramic for solar thermal energy storage[J]. Renewable Energy, 2021, 179: 327-338. |
83 | MORADI M, FARROKHI M, RAHIMI A, et al. Modeling strategies for sensible heat thermal energy recovery through packed beds[J]. Journal of Energy Storage, 2022, 54: 105297. |
84 | YAGI J, AKIYAMA T. Storage of thermal energy for effective use of waste heat from industries[J]. Journal of Materials Processing Technology, 1995, 48(1/2/3/4): 793-804. |
85 | LUO Q Y, LIU X L, YAO H C, et al. Waste polyvinyl chloride derived latent thermal energy storage composites for waste heat recovery via packed bed system[J]. Journal of Cleaner Production, 2023, 415: 137841. |
86 | YU C, QIAN J, CAO D C, et al. Charging performance of structured packed-bed latent thermal energy storage unit with phase change material capsules[J]. Journal of Energy Storage, 2023, 71: 108157. |
87 | LIAO Z R, ZHAO G K, XU C, et al. Efficiency analyses of high temperature thermal energy storage systems of rocks only and rock-PCM capsule combination[J]. Solar Energy, 2018, 162: 153-164. |
88 | PRABU S, ASOKAN M. A study of waste heat recovery from diesel engine exhaust using phase change material[J]. International Journal of ChemTech Research, 2015, 8: 711-717. |
89 | MANENTE G, DING Y L, SCIACOVELLI A. A structured procedure for the selection of thermal energy storage options for utilization and conversion of industrial waste heat[J]. Journal of Energy Storage, 2022, 51: 104411. |
90 | GAUTAM A, SAINI R P. Performance analysis and system parameters optimization of a packed bed solar thermal energy storage having spherical packing elements with pores[J]. Journal of Energy Storage, 2022, 48: 103993. |
91 | KURAVI S, TRAHAN J, GOSWAMI D Y, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Progress in Energy and Combustion Science, 2013, 39(4): 285-319. |
92 | ELSAYED ELFEKY K, GAMBO MOHAMMED A, WANG Q W. Influence of inlet temperature on the performance of cascade and hybrid storage tank for CSP plants[J]. Applied Thermal Engineering, 2022, 206: 118098. |
93 | BOUADILA S, KOOLI S, LAZAAR M, et al. Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use[J]. Applied Energy, 2013, 110: 267-275. |
94 | ARFAOUI N, BOUADILA S, GUIZANI A. A highly efficient solution of off-sunshine solar air heating using two packed beds of latent storage energy[J]. Solar Energy, 2017, 155: 1243-1253. |
95 | ESAKKIMUTHU S, HASSABOU A H, PALANIAPPAN C, et al. Experimental investigation on phase change material based thermal storage system for solar air heating applications[J]. Solar Energy, 2013, 88: 144-153. |
96 | NALLUSAMY N, SAMPATH S, VELRAJ R. Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources[J]. Renewable Energy, 2007, 32(7): 1206-1227. |
97 | SAITOH T, HIROSE K. High-performance phase-change thermal energy storage using spherical capsules[J]. Chemical Engineering Communications, 1986, 41(1/2/3/4/5/6): 39-58. |
98 | NITHYANANDAM K, PITCHUMANI R, MATHUR A. Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power[J]. Applied Energy, 2014, 113: 1446-1460. |
99 | YUE C, GAO P J, XU Y, et al. Investigation on a solar thermal power plant with a packed bed heat storage unit[J]. Journal of Solar Energy Engineering, 2022, 144(4): 041004. |
100 | LI M J, LI M J, TONG Z X, et al. Optimization of the packed-bed thermal energy storage with cascaded PCM capsules under the constraint of outlet threshold temperature[J]. Applied Thermal Engineering, 2021, 186: 116473. |
101 | REDDY K S, PRADEEP N. Stability analysis of the thermocline thermal energy storage system during high flow rates for solar process heating applications[J]. Solar Energy, 2021, 226: 40-53. |
102 | FLUECKIGER S M, GARIMELLA S V. Latent heat augmentation of thermocline energy storage for concentrating solar power-A system-level assessment[J]. Applied Energy, 2014, 116: 278-287. |
[1] | 孛衍君, 薛新杰, 王化宁, 赵长颖. 基于相变堆积床的卡诺电池系统设计与实验研究[J]. 储能科学与技术, 2023, 12(9): 2823-2832. |
[2] | 张雪龄, 叶强, 谷军恒, 荀浩云, 张琦, 程传晓, 金听祥, 张业强. MgSO4-LiCl@MEG复合储热材料的制备与吸附储热性能[J]. 储能科学与技术, 2023, 12(9): 2778-2788. |
[3] | 尹航, 汤建方, 张继, 颜豪, 胡晓睿, 王澍. 电力现货市场中新能源-光热联合发电系统的储热系统容量优化配置[J]. 储能科学与技术, 2023, 12(9): 2842-2853. |
[4] | 朱江恬, 张圆, 罗意彬, 杨慧婷, 李杰, 孙小琴. 基于相变材料蓄热的5G通信基站柜体优化[J]. 储能科学与技术, 2023, 12(9): 2789-2798. |
[5] | 张琦, 李银雷, 栗艳芳, 宋俊, 吴学红, 刘重阳, 张雪龄. 膨胀石墨/多壁碳纳米管基共晶盐复合相变材料的制备及热特性[J]. 储能科学与技术, 2023, 12(8): 2435-2443. |
[6] | 胡茜芮, 张朝阳, 洪芳军. 高温相变胶囊梯级储热系统实验研究[J]. 储能科学与技术, 2023, 12(8): 2526-2535. |
[7] | 赵民, 李杨, 蔡婕, 康维斌, 刘磊. 民用建筑用毛细管相变蓄能罐性能的实验研究[J]. 储能科学与技术, 2023, 12(8): 2626-2637. |
[8] | 严景好, 李杰, 李一鸣, 孙小琴, 席丽娜, 姜昌伟. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434. |
[9] | 张琦, 刘重阳, 宋俊, 张雪龄, 李银雷, 栗艳芳. 微胶囊相变储能材料的合成及其应用研究进展[J]. 储能科学与技术, 2023, 12(4): 1110-1130. |
[10] | 陈红兵, 高雪宁, 刘涛, 王聪聪, 赵瑞, 孙俊辉, 王传岭, 何迪. 应用石蜡/GO复合相变材料的太阳能PV/T系统性能[J]. 储能科学与技术, 2023, 12(3): 661-668. |
[11] | 廖丹, 胡章茂, 王唯, 田红, 宣艳妮, 陈冬林. 立方体填充料结构内换热与流动特性[J]. 储能科学与技术, 2023, 12(3): 676-684. |
[12] | 刘伟, 李振明, 刘铭扬, 杨岑玉, 梅超, 李迎. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430. |
[13] | 沈雪晴, 陈威. 内嵌树形翅片相变层电池热管理性能[J]. 储能科学与技术, 2023, 12(2): 459-467. |
[14] | 董金美, 刘启元, 吴芳, 贾利蕊, 文静, 常成功, 郑卫新, 肖学英. 脂肪酸类二元储能材料的相变特性与配比调节[J]. 储能科学与技术, 2023, 12(2): 349-356. |
[15] | 戴宇成, 王增鹏, 刘凯豹, 赵佳腾, 刘昌会. 基于相变材料的储热器及其传热强化研究进展[J]. 储能科学与技术, 2023, 12(2): 431-458. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||