储能科学与技术 ›› 2023, Vol. 12 ›› Issue (12): 3836-3851.doi: 10.19799/j.cnki.2095-4239.2023.0522
张第玲1,2(), 王翔2, 李豪杰1,2, 刘玉乾1,2, 黄云2(), 暴宁钟1
收稿日期:
2023-08-02
修回日期:
2023-08-18
出版日期:
2023-12-05
发布日期:
2023-12-09
通讯作者:
黄云
E-mail:zhangdiling@ipe.ac.cn;yunhuang@ipe.ac.cn
作者简介:
张第玲(1997—),女,硕士研究生,研究方向为储热材料,E-mail:zhangdiling@ipe.ac.cn;
基金资助:
Diling ZHANG1,2(), Xiang WANG2, Haojie LI1,2, Yuqian LIU1,2, Yun HUANG2(), Ningzhong BAO1
Received:
2023-08-02
Revised:
2023-08-18
Online:
2023-12-05
Published:
2023-12-09
Contact:
Yun HUANG
E-mail:zhangdiling@ipe.ac.cn;yunhuang@ipe.ac.cn
摘要:
定型有机相变材料具有过冷度低、不易出现相偏析、化学稳定性好等优点,在建筑节能、电池热管理和航空热防护等方面具有广泛的应用前景。然而定型有机相变材料普遍存在易燃问题,对其应用安全产生严重影响。因此,亟需对定型有机相变材料的阻燃特性进行研究。本文通过对近几年的相关文献进行总结探讨,简要综述了相变材料的分类、阻燃剂的种类和阻燃机理,概述了常用定型阻燃复合材料的制备方法和种类。并借助极限氧指数、总释放热量、峰值放热速率等参数重点分析了各类阻燃剂对定型相变储热材料热安全性能的影响。在结论中提出了掺入协同阻燃剂和相变材料的化学改性等进一步增强相变材料阻燃性能的策略。有望促进拓宽定型相变材料应用领域的拓宽,提高相变储能系统的安全性,有助于构建更安全、环保、高效的能源储存和利用体系。
中图分类号:
张第玲, 王翔, 李豪杰, 刘玉乾, 黄云, 暴宁钟. 定型有机相变储热材料阻燃改性的研究进展[J]. 储能科学与技术, 2023, 12(12): 3836-3851.
Diling ZHANG, Xiang WANG, Haojie LI, Yuqian LIU, Yun HUANG, Ningzhong BAO. Research progress on flame-retardant modification of shape-stabilized organic phase-change thermal-storage materials[J]. Energy Storage Science and Technology, 2023, 12(12): 3836-3851.
1 | XU J Y, ZHANG X L, ZOU L G. A review: Progress and perspectives of research on the functionalities of phase change materials[J]. Journal of Energy Storage, 2022, 54: doi: 10.1016/j.est.2022.105341. |
2 | LIU K, YUAN Z F, ZHAO H X, et al. Properties and applications of shape-stabilized phase change energy storage materials based on porous material support—A review[J]. Materials Today Sustainability, 2023, 21: doi: 10.1016/j.mtsust.2023.100336. |
3 | HUANG J T, LUO Y H, WENG M, et al. Advances and Applications of Phase Change Materials (PCMs) and PCMs-based Technologies[J]. Es Materials & Manufacturing, 2021, 13: 23-39. |
4 | LV Z H, CHENG C, LV H B. Digital twins for secure thermal energy storage in building[J]. Applied Energy, 2023, 338: 120907. |
5 | RYLAND M, HE W. Domestic thermal energy storage applications: What parameters should they focus on?[J]. Journal of Energy Storage, 2023, 60: doi: 10.1016/j.est.2023.106685. |
6 | TAWALBEH M, KHAN H A, AL-OTHMAN A, et al. A comprehensive review on the recent advances in materials for thermal energy storage applications[J]. International Journal of Thermofluids, 2023, 18: https://doi.org/10.1016/j.ijft.2023.100326. |
7 | CHAVAN S, RUDRAPATI R, MANICKAM S. A comprehensive review on current advances of thermal energy storage and its applications[J]. Alexandria Engineering Journal, 2022, 61(7): 5455-5463. |
8 | LAWAG R A, ALI H M. Phase change materials for thermal management and energy storage: A review[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105602. |
9 | JOUHARA H, ŻABNIEŃSKA-GÓRA A, KHORDEHGAH N, et al. Latent thermal energy storage technologies and applications: A review[J]. International Journal of Thermofluids, 2020, 5/6: https://doi.org/10.1016/j.ijft.2020.100039. |
10 | CHINNASAMY V, HEO J, JUNG S, et al. Shape stabilized phase change materials based on different support structures for thermal energy storage applications-a review[J]. Energy, 2023, 262: https://doi.org/10.1016/j.energy.2023.128919. |
11 | LI T X, LEE J H, WANG R Z, et al. Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J]. International Journal of Heat and Mass Transfer, 2014, 75: 1-11. |
12 | PRABHU P, SAWANT S. Current developments in composite phase change materials for thermal energy storage application: A review[J]. Materials Today: Proceedings, 2023, 72: 810-816. |
13 | SHARSHIR S W, JOSEPH A, ELSHARKAWY M, et al. Thermal energy storage using phase change materials in building applications: A review of the recent development[J]. Energy and Buildings, 2023, 285: 112908. |
14 | ZHANG S Q, MANCIN S, PU L. A review and prospective of fin design to improve heat transfer performance of latent thermal energy storage[J]. Journal of Energy Storage, 2023, 62: 106825. |
15 | 宋德清, 方利国, 王聃. 相变储能材料的研究进展及在建筑中的应用[J]. 节能, 2008, 27(6): 4-7, 2. |
SONG D Q, FANG L G, WANG D. Review of study on phase change material and the application in building[J]. Energy Conservation, 2008, 27(6): 4-7, 2. | |
16 | ZALBA B, MARı́N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. |
17 | CUI Y B, LIU C H, HU S, et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials[J]. Solar Energy Materials and Solar Cells, 2011, 95(4): 1208-1212. |
18 | SHAIKH S, LAFDI K, HALLINAN K. Carbon nanoadditives to enhance latent energy storage of phase change materials[J]. Journal of Applied Physics, 2008, 103(9): doi: 10.1063/1.2903538. |
19 | CHANG Z J, WANG K, WU X H, et al. Review on the preparation and performance of paraffin-based phase change microcapsules for heat storage[J]. Journal of Energy Storage, 2022, 46: 103840. |
20 | 刘尧. 基于水性聚氨酯壳材相变储能微胶囊的制备与性能研究[D]. 青岛: 青岛科技大学, 2018. |
LIU Y. Preparation and properties of microencapsulated phase change materials(MPCM) with waterborne polyurethane as shell material[D]. Qingdao: Qingdao University of Science & Technology, 2018. | |
21 | DIMAANO M N R, ESCOTO A D. Preliminary assessment of a mixture of capric and lauric acids for low-temperature thermal energy storage[J]. Energy, 1998, 23(5): 421-427. |
22 | FELDMAN D, SHAPIRO M M, BANU D, et al. Fatty acids and their mixtures as phase-change materials for thermal energy storage[J]. Solar Energy Materials, 1989, 18(3/4): 201-216. |
23 | HASAN A. Phase change material energy storage system employing palmitic acid[J]. Solar Energy, 1994, 52(2): 143-154. |
24 | SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
25 | CABEZA L F, CASTELL A, BARRENECHE C, et al. Materials used as PCM in thermal energy storage in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1675-1695. |
26 | SINGH A K, RATHORE P K S, SHARMA R K, et al. Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings[J]. Energy, 2023, 263: 125701. |
27 | NITESH K, SINGH R P K, SHARMA R K, et al. Integration of lauric acid/zeolite/graphite as shape stabilized composite phase change material in gypsum for enhanced thermal energy storage in buildings[J]. Applied Thermal Engineering, 2023, 224: https://doi.org/10.1016/j.applthermaleng.2023.120088. |
28 | ZOU D Q, MA X F, LIU X S, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120: 33-41. |
29 | 农增耀. 基于热管的储能型热管理系统性能探究及优化[D]. 包头: 内蒙古科技大学, 2022. |
NONG Z Y. Performance investigation and optimization of energy storage thermal management system base on heat pipe[D]. Baotou: Inner Mongolia University of Science & Technology, 2022. | |
30 | TANG Z Q, XU G, YANG S Q, et al. Fire-retardant foam designed to control the spontaneous combustion and the fire of coal: Flame retardant and extinguishing properties[J]. Powder Technology, 2021, 384: 258-266. |
31 | MAZELA B, BATISTA A, GRZEŚKOWIAK W. Expandable graphite as a fire retardant for cellulosic materials—A review[J]. Forests, 2020, 11(7): 755. |
32 | WANG H W, YIN P. A new flame retardant and its effect on the asphalt mixture[J]. Case Studies in Construction Materials, 2023, 18: e01748. |
33 | ZHANG S S, LI S N, WU Q, et al. Phosphorus containing group and lignin toward intrinsically flame retardant cellulose nanofibril-based film with enhanced mechanical properties[J]. Composites Part B: Engineering, 2021, 212: https://doi.org/10.1016/j.compositesb. 2021.108699. |
34 | SHEN R Q, HATANAKA L C, AHMED L, et al. Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(3): 1443-1451. |
35 | MUHAMMED RAJI A, HAMBALI H U, KHAN Z I, et al. Emerging trends in flame retardancy of rigid polyurethane foam and its composites: A review[J]. Journal of Cellular Plastics, 2023, 59(1): 65-122. |
36 | 朱平. 功能纤维及功能纺织品[M]. 北京: 中国纺织出版社, 2006: 21-22. |
ZHU P. Functional fiber and functional textiles[M]. Beijing: China Textile&Apparel Press, 2006: 21-22. | |
37 | 刘昊育, 辛菲, 杜家盈, 等. 无卤阻燃聚酯复合材料研究进展[J]. 中国塑料, 2023, 37(1): 133-143. |
LIU H Y, XIN F, DU J Y, et al. Research progress in halogen-free flame-retardant polyester composites[J]. China Plastics, 2023, 37(1): 133-143. | |
38 | Y SOLIMAN M, HASSABO A G. Environmentally friendly inorganic materials for anti-flammable cotton fabrics[J]. Journal of Textiles, Coloration and Polymer Science, 2021, 18(2): 97-110. |
39 | BHAKARE M A, LOKHANDE K D, BONDARDE M P, et al. Dual functions of bioinspired, water-based, reusable composite as a highly efficient flame retardant and strong adhesive[J]. Chemical Engineering Journal, 2023, 454: 140421. |
40 | LIU Y, ZHANG A S, CHENG Y M, et al. Recent advances in biomass phytic acid flame retardants[J]. Polymer Testing, 2023, 124: 108100. |
41 | ZUO C L, SU X W, GUO Y B, et al. Fabrication of halogen-free and phosphorus-free flame retardant and antistatic PAN fibers based on tea polyphenol phenolic resin chelated with iron (Ⅲ) ions[J]. Polymer Degradation and Stability, 2023, 214: 110384. |
42 | WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196: 29-46. |
43 | 王中立, 胡先海, 王西弱, 等. 高相容性改性氯化石蜡阻燃增塑剂的合成及在聚氯乙烯中的应用[J]. 高分子材料科学与工程, 2019, 35(8): 1-6. |
WANG Z L, HU X H, WANG X R, et al. Synthesis of high compatibility modified chlorinated paraffin as flame retardant plasticizer and its application in polyvinyl chloride[J]. Polymer Materials Science & Engineering, 2019, 35(8): 1-6. | |
44 | 高腾. 阻燃相变微胶囊的制备及在织物中的应用研究[D]. 青岛: 青岛大学, 2006. |
GAO T. The preparation of flame retardant microcapsule and phase change materials microcapsule and their application in fabric[D]. Qingdao: Qingdao University, 2006. | |
45 | XIAO W D, KIBBLE K A. Comparison of aluminium hydroxide and magnesium hydroxide as flame retardants in sebs-based composites[J]. Polymers and Polymer Composites, 2008, 16(7): 415-422. |
46 | HAURIE L, FERNÁNDEZ A I, VELASCO J I, et al. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures[J]. Polymer Degradation and Stability, 2007, 92(6): 1082-1087. |
47 | KANG M, WANG G X, LIU W X, et al. Fabrication of highly flame-retardant paper by in situ loading of magnesium hydroxide/basic magnesium chloride onto cellulose fibers[J]. Cellulose, 2023, 30(11): 7295-7312. |
48 | ZHANG H Y, WANG H Q, WANG H Q. Flame retardant mechanism and surface modification of magnesium hydroxide flame retardant[J]. IOP Conference Series: Earth and Environmental Science, 2018, 170: 032028. |
49 | GAO Y S, WU J W, WANG Q, et al. Flame retardant polymer/layered double hydroxide nanocomposites[J]. Journal of Materials Chemistry A, 2014, 2(29): 10996-11016. |
50 | SONG G L, MA S D, TANG G Y, et al. Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide[J]. Energy, 2010, 35(5): 2179-2183. |
51 | FANG Q, ZHAN Y Y, CHEN X, et al. A bio-based intumescent flame retardant with biomolecules functionalized ammonium polyphosphate enables polylactic acid with excellent flame retardancy[J]. European Polymer Journal, 2022, 177: 111479. |
52 | YANG T H, WU Y P, CHENG Y C, et al. Synthesis of a charring agent containing triazine and benzene groups and its intumescent flame retardant performance for polypropylene[J]. Polymer Degradation and Stability, 2022, 204: 110107. |
53 | SHEN R Q, QUAN Y F, ZHANG Z R, et al. Metal-organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene[J]. Industrial & Engineering Chemistry Research, 2022, 61(21): 7292-7302. |
54 | YUAN J, WANG H, WANG Y D, et al. A novel highly efficient intumescent flame-retardant polypropylene: Thermal degradation, flame retardance and mechanism[J]. Journal of Polymer Research, 2022, 29(5): 205. |
55 | YANG Y X, LI Z, WU G, et al. A novel biobased intumescent flame retardant through combining simultaneously char-promoter and radical-scavenger for the application in epoxy resin[J]. Polymer Degradation and Stability, 2022, 196: 109841. |
56 | 张平. 石蜡类相变材料的设计及其热物性与阻燃性能研究[D]. 合肥: 中国科学技术大学, 2011. |
ZHANG P. Design of paraffin as a phase change material, and study on themphysical and flame retardant properties of the phase change material[D]. Hefei: University of Science and Technology of China, 2011. | |
57 | LI S S, LIN X H, LIU Y, et al. Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric[J]. Cellulose, 2019, 26(6): 4213-4223. |
58 | SHI Q, HUO S Q, WANG C, et al. A phosphorus/silicon-based, hyperbranched polymer for high-performance, fire-safe, transparent epoxy resins[J]. Polymer Degradation and Stability, 2022, 203: 110065. |
59 | 郝变芝. 无机纳米阻燃剂改性含氟聚丙烯酸酯无皂乳液的合成和性能研究[D]. 西安: 陕西科技大学, 2017. |
HAO B Z. Preparation and properties of inorganic nano flame retardant modified fluorinated polyacrylate soap-free latex[D]. Xi'an: Shaanxi University of Science & Technology, 2017. | |
60 | DA SILVA RIBEIRO S P, DE MOURA ESTEVÃO L R, PEREIRA C M C, et al. Mechanism of action of different d-spacings clays on the intumescent fire retardance of polymers[J]. Journal of Applied Polymer Science, 2013, 130(3): 1759-1771. |
61 | 蔡以兵. 阻燃定形相变材料及苯乙烯—丙烯腈基聚合物/粘土纳米复合材料的制备与性能研究[D]. 合肥: 中国科学技术大学, 2007. |
CAI Y B. The preparation, properties of fire retardant form-stable phase change material and styrene-acrylonitrile series polymer/clay nanocomposites[D]. Hefei: University of Science and Technology of China, 2007. | |
62 | GUILLAUME E, YARDIN C, AUMAITRE S, et al. Uncertainty evaluation of oxygen index determination according to ISO 4589-2[J]. Journal of Fire Sciences, 2011, 29(6): 499-508. |
63 | BORYSIAK S, PAUKSZTA D, HELWIG M. Flammability of wood-polypropylene composites[J]. Polymer Degradation and Stability, 2006, 91(12): 3339-3343. |
64 | WANG Y, JOW J, SU K, et al. Dripping behavior of burning polymers under UL94 vertical test conditions[J]. Journal of Fire Sciences, 2012, 30(6): 477-501. |
65 | 何中琴. 无毒, 无刺激性的纤维用防火阻燃剂系列[J]. 印染译丛, 1996(5): 76-78. |
66 | WELDEMHRET T G, MENGE H G, LEE D W, et al. Facile deposition of environmentally benign organic-inorganic flame retardant coatings to protect flammable foam[J]. Progress in Organic Coatings, 2021, 161: 106480. |
67 | JIN L Z, TAN Y L, YUAN S P, et al. Phytic acid-decorated κ-carrageenan/melanin hybrid aerogels supported phase change composites with excellent photothermal conversion efficiency and flame retardancy[J]. Renewable Energy, 2023, 206: 148-156. |
68 | LUO Y, XIE Y H, JIANG H, et al. Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage[J]. Chemical Engineering Journal, 2021, 420: 130466. |
69 | LIAO H H, DUAN W F, LIU Y, et al. Flame retardant and leaking preventable phase change materials for thermal energy storage and thermal regulation[J]. Journal of Energy Storage, 2021, 35: 102248. |
70 | ZHANG J Y, LI X X, ZHANG G Q, et al. Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system[J]. Journal of Power Sources, 2020, 480: 229116. |
71 | QIAN Y, WEI P, JIANG P K, et al. Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application[J]. Applied Energy, 2013, 106: 321-327. |
72 | XU L, LIU X A, YANG R. Flame retardant paraffin-based shape-stabilized phase change material via expandable graphite-based flame-retardant coating[J]. Molecules, 2020, 25(10): 2408. |
73 | YUAN Y, YU B, WANG W. The influence of poorly-/well-dispersed organo-montmorillonite on interfacial compatibility, fire retardancy and smoke suppression of polypropylene/intumescent flame retardant composite system[J]. Journal of Colloid and Interface Science, 2022, 622: 367-377. |
74 | BAR M, ALAGIRUSAMY R, DAS A. Flame retardant polymer composites[J]. Fibers and Polymers, 2015, 16(4): 705-717. |
75 | 刘亮, 吴爱枝, 黄云, 等. NaNO3/SiO2/C复合无机相变储热材料阻燃性能及多升温速率下热物性与安全性[J]. 应用化工, 2021, 50(2): 359-362. |
LIU L, WU A Z, HUANG Y, et al. Flame retardancy and thermal properties and safety at multiple heating rates of NaNO3/SiO2/C composite inorganic phase change thermal storage material[J]. Applied Chemical Industry, 2021, 50(2): 359-362. | |
76 | HAN D, WANG H, LU T, et al. Scalable manufacturing green core-shell structure flame retardant, with enhanced mechanical and flame-retardant performances of polylactic acid[J]. Journal of Polymers and the Environment, 2022, 30(6): 2516-2533. |
77 | ZHANG P, HU Y, SONG L, et al. Synergistic effect of iron and intumescent flame retardant on shape-stabilized phase change material[J]. Thermochimica Acta, 2009, 487(1/2): 74-79. |
78 | CAI Y B, WEI Q F, HUANG F L, et al. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites[J]. Renewable Energy, 2009, 34(10): 2117-2123. |
79 | CAI Y B, WEI Q F, HUANG F L, et al. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites[J]. Applied Energy, 2008, 85(8): 765-775. |
80 | CAI Y B, WEI Q F, SHAO D F, et al. Magnesium hydroxide and microencapsulated red phosphorus synergistic flame retardant form stable phase change materials based on HDPE/EVA/OMT nanocomposites/paraffin compounds[J]. Journal of the Energy Institute, 2009, 82(1): 28-36. |
81 | CAI Y B, HU Y, SONG L, et al. Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material[J]. Energy Conversion and Management, 2007, 48(2): 462-469. |
82 | ZHANG P, HU Y, SONG L, et al. Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 360-365. |
83 | ZHANG P, SONG L, LU H D, et al. The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material[J]. Energy Conversion and Management, 2010, 51(12): 2733-2737. |
84 | ZHANG P, SONG L, LU H D, et al. The thermal property and flame retardant mechanism of intumescent flame retardant paraffin system with metal[J]. Industrial & Engineering Chemistry Research, 2010, 49(13): 6003-6009. |
85 | ZHANG P, KANG M, HU Y. Influence of layered zinc hydroxide nitrate on thermal properties of paraffin/intumescent flame retardant as a phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2013, 112(3): 1199-1205. |
86 | ZHAO C Y, TAO Y B, YU Y S. Molecular dynamics simulation of nanoparticle effect on melting enthalpy of paraffin phase change material[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119382. |
87 | GULFAM R, ZHANG P, MENG Z N. Advanced thermal systems driven by paraffin-based phase change materials-A review[J]. Applied Energy, 2019, 238: 582-611. |
88 | KAHWAJI S, JOHNSON M B, KHEIRABADI A C, et al. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications[J]. Energy, 2018, 162: 1169-1182. |
89 | WEI F, FENG C, YANG J, et al. Scalable flexible phase change materials with a swollen polymer network structure for thermal energy storage[J]. Acs Applied Materials & Interfaces, 2021, 13(49): 59364-59372. |
90 | MOCHANE M J, LUYT A S. Synergistic effect of expanded graphite, diammonium phosphate and Cloisite 15A on flame retardant properties of EVA and EVA/wax phase-change blends[J]. Journal of Materials Science, 2015, 50(9): 3485-3494. |
91 | WANG J P, WANG Y, YANG R. Flame retardance property of shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells, 2015, 140: 439-445. |
92 | SHENG N, NOMURA T, ZHU C Y, et al. Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2019, 192: 8-15. |
93 | 王罡, 郭垂根, 李丽萍. 膨胀阻燃剂对石蜡/聚丙烯相变材料热降解及相变储能性能的影响[J]. 化工新型材料, 2014, 42(11): 104-106. |
WANG G, GUO C G, LI L P. Effect of intumescent flame retardant on pyrolysis and phase change energy storage property of paraffin/polypropylene blends as form-stable phase change materials[J]. New Chemical Materials, 2014, 42(11): 104-106. | |
94 | 王罡. APP/CFA膨胀阻燃石蜡—聚丙烯定形相变材料的制备与研究[D]. 哈尔滨: 东北林业大学, 2015. |
WANG G. Preparation and property of APP/CFA intumescent flame retardant paraffin-polypropylene form-stable phase change material[D]. Harbin: Northeast Forestry University, 2015. | |
95 | LI L P, WANG G, GUO C G. Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials[J]. Applied Energy, 2016, 162: 428-434. |
96 | SITTISART P, FARID M M. Fire retardants for phase change materials[J]. Applied Energy, 2011, 88(9): 3140-3145. |
97 | XU L, LIU X, AN Z H, et al. EG-based coatings for flame retardance of shape stabilized phase change materials[J]. Polymer Degradation and Stability, 2019, 161: 114-120. |
98 | SUN X P, YI M M, FENG B, et al. Shape-stabilized composite phase change material PEG@TiO2 through in situ encapsulation of PEG into 3D nanoporous TiO2 for thermal energy storage[J]. Renewable Energy, 2021, 170: 27-37. |
99 | 倪旭萍. 阻燃聚氨酯相变储能材料的制备及其火灾行为研究[D]. 成都: 西南交通大学, 2015. |
NI X P. Preparation and study on the fire behavior of flame retard ant polyurethane phase change energy storage material[D]. Chengdu: Southwest Jiaotong University, 2015. | |
100 | 荆锐. 多孔碳协同强化复合相变材料的构筑及储热构效关系研究[D]. 桂林: 桂林电子科技大学, 2022. |
JING R. Construction and thermal storage structure-properties relationship of porous carbon synergistic reinforced composite phase change materials[D]. Guilin: Guilin University of Electronic Technology, 2022. | |
101 | 陈永祥. 阻燃木塑定型聚乙二醇相变材料的制备与性能研究[D]. 哈尔滨: 东北林业大学, 2017. |
CHEN Y X. Preparation and property of flame retardant wood-plastic form-stable polyethylene glycol phase change material[D]. Harbin: Northeast Forestry University, 2017. | |
102 | 郭琪. 新型阻燃相变材料的制备与研究[D]. 上海: 上海交通大学, 2013. |
GUO Q. The study of the novel flame retardant phase change materials[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
103 | YIN G Z, YANG X M, HOBSON J, et al. Bio-based poly (glycerol-itaconic acid)/PEG/APP as form stable and flame-retardant phase change materials[J]. Composites Communications, 2022, 30: 101057. |
104 | TANWAR S, KAUR R. Fabrication and investigation on influence of metal oxide nanoparticles on thermal, flammability and UV characteristics of polyethylene glycol based phase change materials[J]. Journal of Energy Storage, 2022, 54: 105318. |
105 | CHEN T, SUN H X, MU P, et al. Fatty amines as a new family of organic phase change materials with exceptionally high energy density[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110340. |
106 | 冯一帆, 蒋思炯, 付鑫, 等. 储热技术现状及相变储热材料的研究进展[J]. 信息记录材料, 2023, 24(2): 32-36. |
FENG Y F, JIANG S J, FU X, et al. Current status of heat storage technology and research progress of phase change thermal storage materials[J]. Information Recording Materials, 2023, 24(2): 32-36. | |
107 | 汪林强. 定型相变复合材料的制备及其光热储能性能的研究[D]. 兰州: 兰州理工大学, 2022. |
WANG L Q. Preparation of shaped phase change composites and study on their photothermal energy storage properties[D]. Lanzhou: Lanzhou University of Technology, 2022. | |
108 | ZHANG R Q, CHEN D M, CHEN L, et al. Preparation and thermal properties analysis of fatty acids/1-hexadecanol binary eutectic phase change materials reinforced with TiO2 particles[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022. 104546. |
109 | TABASSUM H, HUANG X Y, CHEN R J, et al. Tailoring thermal properties via synergistic effect in a multifunctional phase change composite based on methyl stearate[J]. Journal of Materiomics, 2015, 1(3): 229-235. |
110 | ALKHAZALEH A H, ALMANASEER W, ALKHAZALI A. Experimental investigation on thermal properties and fire performance of lauric acid/diphenyl phosphate/expanded perlite as a flame retardant phase change material for latent heat storage applications[J]. Sustainable Energy Technologies and Assessments, 2023, 56: https://doi.org/10.1016/j.seta.2023.103059. |
111 | KANG M Y, LIU Y Q, LIANG C C, et al. Phase change material microcapsules with DOPO/Cu modified halloysite nanotubes for thermal controlling of buildings: Thermophysical properties, flame retardant performance and thermal comfort levels[J]. International Journal of Heat and Mass Transfer, 2023, 207, https://doi.org/10.1016/j.ijheatmasstransfer.2023.124045. |
[1] | 董金美, 刘启元, 吴芳, 贾利蕊, 文静, 常成功, 郑卫新, 肖学英. 脂肪酸类二元储能材料的相变特性与配比调节[J]. 储能科学与技术, 2023, 12(2): 349-356. |
[2] | 王君雷, 张第玲, 王昆, 许东东, 徐祥贵, 姚华, 刘文巍, 黄云. 碳酸盐/高炉矿渣定型复合相变储热材料的制备与性能[J]. 储能科学与技术, 2022, 11(9): 3028-3034. |
[3] | 尹涛, 贾隆舟, 常修亮, 戴作强, 郑莉莉. 软包磷酸铁锂电池高电压浮充后热安全研究[J]. 储能科学与技术, 2022, 11(8): 2546-2555. |
[4] | 刘杭鑫, 陈现涛, 孙强, 赵晨曦. 软包锂离子电池真空环境下循环性能特性[J]. 储能科学与技术, 2022, 11(6): 1806-1815. |
[5] | 张琦, 王玉静, 李银雷, 刘重阳. 一种新型蓄冷储热复合相变材料及其应用[J]. 储能科学与技术, 2022, 11(10): 3133-3141. |
[6] | 喻彩梅, 章学来, 华维三. 十水硫酸钠相变储能材料研究进展[J]. 储能科学与技术, 2021, 10(3): 1016-1024. |
[7] | 徐众, 侯静, 李军, 吴恩辉, 黄平, 唐亚兰. 不同粒径活性炭/肉豆蔻酸复合相变材料[J]. 储能科学与技术, 2021, 10(1): 177-189. |
[8] | 杜光超, 郑莉莉, 张志超, 冯燕, 王栋, 戴作强. 锂离子电池热安全性研究进展[J]. 储能科学与技术, 2019, 8(3): 500-505. |
[9] | 周卫兵, 韦钧, 李康, 朱教群, 程晓敏. 掺月桂酸-硬脂酸/膨胀蛭石复合相变材料建筑砂浆的制备和性能表征[J]. 储能科学与技术, 2019, 8(1): 92-97. |
[10] | 王 艳,白凤武,杨 贝,王志峰. 高温显热-潜热复合储热系统传热特性研究[J]. 储能科学与技术, 2017, 6(4): 719-725. |
[11] | 朱教群,宋 轶,周卫兵,刘凤利. 基于碳材料的有机复合相变材料导热增强研究进展[J]. 储能科学与技术, 2017, 6(2): 213-222. |
[12] | 朱教群,陈 维,周卫兵,李儒光,张弘光. 三元硫酸熔盐的制备及其热稳定性能[J]. 储能科学与技术, 2016, 5(4): 498-502. |
[13] | 朱 蕾,贾 荻,俞 超,吴勇民,吴晓萌,汤卫平. 锂离子电池LiFePO4/LiNi0.8Co0.15Al0.05O2混合正极材料的电化学热稳定性能[J]. 储能科学与技术, 2016, 5(4): 478-485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||