储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 177-189.doi: 10.19799/j.cnki.2095-4239.2020.0232
徐众1,2,3(
), 侯静1, 李军2,3, 吴恩辉2,3, 黄平2,3, 唐亚兰1
收稿日期:2020-07-02
修回日期:2020-09-09
出版日期:2021-01-05
发布日期:2021-01-08
通讯作者:
徐众
E-mail:418968604@qq.com
基金资助:
Zhong XU1,2,3(
), Jing HOU1, Jun LI2,3, Enhui WU2,3, Ping HUANG2,3, Yalan TANG1
Received:2020-07-02
Revised:2020-09-09
Online:2021-01-05
Published:2021-01-08
Contact:
Zhong XU
E-mail:418968604@qq.com
摘要:
利用不同粒径活性炭(AC)为支撑材料,肉豆蔻酸(MA)为相变主材,采用熔融共混法制备不同AC/MA定型复合相变材料。借助电动压片机、红外成像仪、稳态热导率测试仪和半导体电阻率测试仪对材料物理性质及性能进行测试。结果表明,MA中添加200、300、325和400目(1目=1.5 μm,余同)AC的最佳质量分数分别为47%、42%、38%和35%,添加质量分数随粒径减小而减小;成型复合材料的密度随AC质量分数和成型压力增加而增大,而泄漏率则随其增加而减小。成型复合材料的温度场分布更均匀,蓄-放热时间均比纯MA短。复合材料热导率分别比纯MA提高了1.91~4.11、2.05~3.93、1.71~3.93和1.97~4.11倍。复合材料的电阻率会随压力和石墨添加质量分数增加而减小,添加10%的石墨后,电阻率降低1~2个数量级;液态下混合材料电阻率波动更小;拟合分析显示材料电阻率与压力之间呈指数衰减趋势。
中图分类号:
徐众, 侯静, 李军, 吴恩辉, 黄平, 唐亚兰. 不同粒径活性炭/肉豆蔻酸复合相变材料[J]. 储能科学与技术, 2021, 10(1): 177-189.
Zhong XU, Jing HOU, Jun LI, Enhui WU, Ping HUANG, Yalan TANG. Properties of different particle-sized activated carbon/myristic acid composite phase change material[J]. Energy Storage Science and Technology, 2021, 10(1): 177-189.
表3
电阻率曲线指数拟合结果"
| 材料 | 拟合方程 | 决定系数R2 |
|---|---|---|
| AC4 | y=2179.7+19534.6×exp(-x/2.0563) | 0.98378 |
| AC4+8% graphite | y=396.65+9130.98×exp(-x/1.3769) | 0.98929 |
| AC4+10% graphite | y=89.091+6212.06×exp(-x/1.10557) | 0.99657 |
| AC1/MA+8% graphite | y=53.7174+3435.53×exp(-x/1.43462) | 0.96591 |
| AC2/MA+8% graphite | y=9.18046+2017.35×exp(-x/1.4661) | 0.99234 |
| AC3/MA+8% graphite | y=16.3976+7789.82×exp(-x/1.3499) | 0.99956 |
| AC4/MA+8% graphite | y=6.58653+320.273×exp(-x/1.8332) | 0.99231 |
| AC1/MA+10% graphite | y=12.2668+1867.63×exp(-x/1.1826) | 0.97837 |
| AC2/MA+10% graphite | y=4.12206+344.133×exp(-x/1.3839) | 0.98201 |
| AC3/MA+10% graphite | y=7.75698+1922.48×exp(-x/1.0871) | 0.98899 |
| AC4/MA+10% graphite | y=4.11500+290.631×exp(-x/1.6605) | 0.98819 |
| AC4+10% graphite +MA | y=19.8737+2902.24×exp(-x/0.8959) | 0.99927 |
| 1 | 王静静, 徐小亮, 梁凯彦, 等. 多孔基定形复合相变材料传热性能提升研究进展[J]. 工程科学学报, 2020 , 42(1): 26-38 |
| WANG Jingjing, XU Xiaoliang, LIANG Kaiyan, et al. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: A review[J]. Chinese Journal of Engineering, 2020, 42(1): 26-38. | |
| 2 | HU Zhanjiang, WANG Chaoming, JIA Wenbing, et al. Preparation and thermal properties of 1-hexadeacnol-palmitic acid eutectic mixture/activated carbon composite phase change material for thermal energy[J]. Storage Energy Technology & Environmental Science, 2019, 4(1): 222-227. |
| 3 | ZHANG Xialan, LIN Qilang, LUO Huijun, et al. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage[J]. Applied Energy, 2020, 260(1): doi: 10.1016/j.apenergy.2019.114278. |
| 4 | ZHU Xiao, HAN Liang, YANG Fei, et al. Lightweight mesoporous carbon fibers with interconnected graphitic walls for supports of form-stable phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2020, 208(5): doi: 10.1016/j.solmat.2019.110361. |
| 5 | ZHU Xiao, HAN Liang, LU Yunfeng, et al. Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes[J]. Applied Energy, 2019, 254(21): doi: 10.1016/j.apenergy.2019.113688. |
| 6 | MISHRA A K, LAHIRI B. B, PHILIP J. Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage[J]. Energy, 2020, 191(2): doi: 10.1016/j.energy.2019.16572. |
| 7 | XIE Baoshan, LI Chuanchang, ZHANG Bo, et al. Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater[J]. Energy and Built Environment, 2020, 1(2): 187-198. |
| 8 | 李亚琼, 李洋, 席作帅, 等 茄子衍生多孔碳负载聚乙二醇相变复合材料[J]. 工程科学学报, 2020 , 42(1): 106-112 |
| LI Yaqiong, LI Yang, XI Zuoshuai, et al. Eggplant-derived porous carbon encapsulating polyethylene glycol as phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 106-112. | |
| 9 | ZHANG Haichen, KANG Benhao, SHENG Xinxin, et al. Novel bio-based pomelo peel flour/polyethylene glycol composite phase change material for thermal energy storage[J]. Polymers, 2019, 11(12): doi: 10.3390/polym11122043. |
| 10 | 陶璋, 伍玲梅, 张亚飞, 等 . 生物质多孔碳基复合相变材料制备及性能[J]. 工程科学学报, 2020 , 42(1): 113-119 |
| TAO Zhang, WU Lingmei, ZHANG Yafei, et al. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119. | |
| 11 | TANG Lisheng, ZHAO Xing, FENG Changping, et al. Bacterial cellulose/MXene hybrid aerogels for photo driven shape-stabilized composite phase change materials[J]. Solar Energy Materials and Solar Cells, 2019, 203(15): doi: 10.1016/j.solmat.2019.110174. |
| 12 | ZHOU Dongyi, ZHOU Yuhong, YUAN Jiawei, et al. Palmitic acid-stearic acid/expanded graphite as form-stable composite phase-change material for latent heat thermal energy storage[J]. Journal of Nanomaterials, 2020, doi: https://doi. org/10. 1155/2020/1648080. |
| 13 | GARIBALDI E, COLOMBO L, FAGIANI D, et al. Methods to characterize effective thermal conductivity, diffusivity and thermal response in different classes of composite phase change materials[J]. Materials, 2019, 12(16): doi: http://doi.org/3390/mal12162552. |
| 14 | ZHANG Jiangyun, LI Xinxi, ZHANG Guoqing, et al. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management[J]. Energy Conversion and Management, 2020, 204(15): doi: 10.1016/j.enconman.2019.112319. |
| 15 | LI Chuanchang, ZHANG Bo, LIU Qingxia. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29(3): doi: 10.1016/j.est.2020.101339. |
| 16 | YU Chengbin, YOUN J R, SONG Y S. Encapsulated phase change material embedded by graphene powders for smart and flexible thermal response[J]. Fibers and Polymers, 2019, 20(3): 545-554. |
| 17 | 董光能, 谢友柏, 虞烈, 等. 相变可控的复合导电自润滑材料的加热特性[J]. 高分子材料科学与工程, 2002(3): 125-128. |
| DONG Guangneng, XIE Youbai, YU Lie, et al. Heating characteristics of self-lubricating conducting composites materials with controllable phase transformation[J]. Polymer Materials Science & Engineering, 2002(3): 125-128. | |
| 18 | 张璐一. 掺加相变材料和碳纤维材料的沥青混凝土路面融雪去冰效果研究[D]. 天津: 河北工业大学, 2015. |
| ZHANG Luyi. The study on the effect of melting snow and ice by asphalt concrete pavement filled with phase-change material and carbon fiber material[D]. Tianjin: Hebei University of Technology, 2015. | |
| 19 | 任苗. 导电相变储热混凝土的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
| REN Miao. Preparation and performance research of electrical conductive concrete incorporating phase change thermal storage aggregate[D]. Harbin: Harbin Institute of Technology, 2018. | |
| 20 | 赵宇轩. 静电纺丝法制备光电调温储能复合纤维与性能研究[D]. 北京: 北京石油化工学院, 2019. |
| ZHAO Yuxuan. Performance and properties of photoelectric temperature-regulating energy-storage composite fiber prepared by electrospinning[D]. Beijing: Beijing Institute of Petrochemical Technology, 2019. | |
| 21 | LIU Peng, GU Xiaobin, BIAN Liang, et al. Caprice acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(1): 359-368. |
| 22 | 徐众, 黄平, 吴恩辉, 等. 膨胀石墨/石蜡复合相变材料的电阻率分析[J]. 储能科学与技术, 2019, 8(2): 371-378. |
| XU Zhong, HUANG Ping, WU Enhui, et al. Analysis of resistivity of expanded graphite/paraffin phase change material[J]. Energy Storage Science and Technology, 2019, 8(2): 371-378. | |
| 23 | LU Xiang, LIANG Bing, SHENG Xinxin, et al. Enhanced thermal conductivity of polyurethane/wood powder composite phase change materials via incorporating low loading of graphene oxide nanosheets for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 208(5): doi: 10.1016/j.solmat.2019.110391. |
| 24 | 王博, 朱孝钦, 胡劲, 等. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819. |
| WANG Bo, ZHU Xiaoqin, HU Jin, et al. Nano-graphite enhanced thermal conductivity of decanoic caid-tetradecyl alcohol composite phase change material[J]. Materials Reports, 2019, 33(22): 3815-3819. | |
| 25 | SAEED R, HAMID M, RAMIN H K, et al. Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes[J]. Journal of Thermal Analysis and Calorimetry, 2019, 140: 2505-2518. |
| 26 | YANG Li, CAO Xiaoling, ZHANG Nan, et al. Thermal reliability of typical fatty acids as phase change materials based on 10, 000 accelerated thermal cycles[J]. Sustainable Cities and Society, 2019, 46(3): doi: 10.1016/j.scs.2018.12.008. |
| 27 | SARI A, AL-AHMED A, BICER A, et al. Investigation of thermal properties and enhanced energy storage/release performance of silica fume/myristic acid composite doped with carbon nanotubes[J]. Renewable Energy, 2019, 140(11): 779-788. |
| 28 | XUE Fei, LU Yu, QI Xiaodong, et al. Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities[J]. Chemical Engineering Journal, 2019, 365(11): 20-29. |
| 29 | WEI Xiao, XUE Fei, QI Xiaodong, et al. Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure[J]. Applied Energy, 2019, 236(1): 70-80. |
| 30 | 王青青, 范鹏远, 陈玉明, 等. 膨胀石墨/石蜡复合相变材料热-电特性实验研究[J]. 塑料工业, 2018, 46(9): 129-133+137. |
| WANG Qingqing, FAN Pengyuan, CHEN Yuming, et al. Experimental study on the thermo-physical and electrical properties of paraffin/expanded graphite composite phase change materials[J]. China Plastics Industry, 2018, 46(9): 129-133+137. |
| [1] | 熊良涛, 王继芬, 谢华清, 章学来. 空位缺陷对单层石墨烯导热特性影响的分子动力学[J]. 储能科学与技术, 2022, 11(5): 1322-1330. |
| [2] | 王瑨, 王建全, 阮殿波, 谢皎, 杨斌. 硅/活性炭复合材料的制备及其电化学性能[J]. 储能科学与技术, 2021, 10(1): 104-110. |
| [3] | 桑丽霞, 许永旺, 李锋, 张雅婷, 马文童, 陈旭, 王浩. 碳酸盐/氧化镁-鳞片石墨定型复合蓄热材料的制备及其导热性能[J]. 储能科学与技术, 2019, 8(5): 886-890. |
| [4] | 官亦标, 沈进冉, 李康乐, 徐斌. 电容型锂离子电池研究进展[J]. 储能科学与技术, 2019, 8(5): 799-806. |
| [5] | 徐众, 黄平, 吴恩辉, 侯静, 李军, 刘黔蜀. 膨胀石墨/石蜡复合相变材料的电阻率分析[J]. 储能科学与技术, 2019, 8(2): 371-378. |
| [6] | 夏恒恒, 安仲勋, 黄廷立, 方文英, 杜连欢, 吴明霞, 索路路, 徐甲强, 华黎. 基于活性炭/镍钴锰酸锂(AC/LiNi0.5Co0.2Mn0.3O2)复合正极的锂离子超级电容电池的构建及其电化学性能[J]. 储能科学与技术, 2018, 7(6): 1233-1241. |
| [7] | 杨 斌1,2,傅冠生2,丁 升2,王成扬1,阮殿波2,刘秋香2. 以高富锂Li2NiO2/活性炭为正极的锂离子电容器电化学性能研究[J]. 储能科学与技术, 2018, 7(2): 270-275. |
| [8] | 张天任1,赵海敏1,郭志刚1,赵 薇2,赵瑞瑞2. 铅炭电池关键材料研究进展及机理分析[J]. 储能科学与技术, 2017, 6(6): 1217-. |
| [9] | 王 亚,张 东. 混杂三维网状石墨烯相变复合材料的制备与热性能分析[J]. 储能科学与技术, 2017, 6(4): 675-680. |
| [10] | 王彩霞1,黄 云1,姚 华1,叶 锋1,杨 军1,丁玉龙2. 纳米流体研究进展[J]. 储能科学与技术, 2017, 6(1): 24-34. |
| [11] | 张世佳,张 熊,孙现众,赵菲菲,贾俊翔,马衍伟. 中间相炭微球负极预嵌锂量对软包装锂离子电容器性能的影响[J]. 储能科学与技术, 2016, 5(6): 834-840. |
| [12] | 马玉柱1,2,周 聪3,于宝军1,2,陈明鸣1,2,王成扬1, 2. 生物质基球形活性炭的制备及其电化学性能[J]. 储能科学与技术, 2016, 5(6): 855-860. |
| [13] | 郑 超1,周旭峰2,刘兆平2,杨 斌1,焦旺春1,傅冠生1,阮殿波1. 活性石墨烯/活性炭干法复合电极片制备及其在超级电容器中的应用[J]. 储能科学与技术, 2016, 5(4): 486-491. |
| [14] | 张亚飞, 张传祥, 王力, 邢宝林, 黄光许, 段玉玲. 飞灰基活性炭电极材料的制备及其电化学性能[J]. 储能科学与技术, 2014, 3(4): 353-359. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||