1 |
王静静, 徐小亮, 梁凯彦, 等. 多孔基定形复合相变材料传热性能提升研究进展[J]. 工程科学学报, 2020 , 42(1): 26-38
|
|
WANG Jingjing, XU Xiaoliang, LIANG Kaiyan, et al. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: A review[J]. Chinese Journal of Engineering, 2020, 42(1): 26-38.
|
2 |
HU Zhanjiang, WANG Chaoming, JIA Wenbing, et al. Preparation and thermal properties of 1-hexadeacnol-palmitic acid eutectic mixture/activated carbon composite phase change material for thermal energy[J]. Storage Energy Technology & Environmental Science, 2019, 4(1): 222-227.
|
3 |
ZHANG Xialan, LIN Qilang, LUO Huijun, et al. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage[J]. Applied Energy, 2020, 260(1): doi: 10.1016/j.apenergy.2019.114278.
|
4 |
ZHU Xiao, HAN Liang, YANG Fei, et al. Lightweight mesoporous carbon fibers with interconnected graphitic walls for supports of form-stable phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2020, 208(5): doi: 10.1016/j.solmat.2019.110361.
|
5 |
ZHU Xiao, HAN Liang, LU Yunfeng, et al. Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes[J]. Applied Energy, 2019, 254(21): doi: 10.1016/j.apenergy.2019.113688.
|
6 |
MISHRA A K, LAHIRI B. B, PHILIP J. Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage[J]. Energy, 2020, 191(2): doi: 10.1016/j.energy.2019.16572.
|
7 |
XIE Baoshan, LI Chuanchang, ZHANG Bo, et al. Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater[J]. Energy and Built Environment, 2020, 1(2): 187-198.
|
8 |
李亚琼, 李洋, 席作帅, 等 茄子衍生多孔碳负载聚乙二醇相变复合材料[J]. 工程科学学报, 2020 , 42(1): 106-112
|
|
LI Yaqiong, LI Yang, XI Zuoshuai, et al. Eggplant-derived porous carbon encapsulating polyethylene glycol as phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 106-112.
|
9 |
ZHANG Haichen, KANG Benhao, SHENG Xinxin, et al. Novel bio-based pomelo peel flour/polyethylene glycol composite phase change material for thermal energy storage[J]. Polymers, 2019, 11(12): doi: 10.3390/polym11122043.
|
10 |
陶璋, 伍玲梅, 张亚飞, 等 . 生物质多孔碳基复合相变材料制备及性能[J]. 工程科学学报, 2020 , 42(1): 113-119
|
|
TAO Zhang, WU Lingmei, ZHANG Yafei, et al. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119.
|
11 |
TANG Lisheng, ZHAO Xing, FENG Changping, et al. Bacterial cellulose/MXene hybrid aerogels for photo driven shape-stabilized composite phase change materials[J]. Solar Energy Materials and Solar Cells, 2019, 203(15): doi: 10.1016/j.solmat.2019.110174.
|
12 |
ZHOU Dongyi, ZHOU Yuhong, YUAN Jiawei, et al. Palmitic acid-stearic acid/expanded graphite as form-stable composite phase-change material for latent heat thermal energy storage[J]. Journal of Nanomaterials, 2020, doi: https://doi. org/10. 1155/2020/1648080.
|
13 |
GARIBALDI E, COLOMBO L, FAGIANI D, et al. Methods to characterize effective thermal conductivity, diffusivity and thermal response in different classes of composite phase change materials[J]. Materials, 2019, 12(16): doi: http://doi.org/3390/mal12162552.
|
14 |
ZHANG Jiangyun, LI Xinxi, ZHANG Guoqing, et al. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management[J]. Energy Conversion and Management, 2020, 204(15): doi: 10.1016/j.enconman.2019.112319.
|
15 |
LI Chuanchang, ZHANG Bo, LIU Qingxia. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29(3): doi: 10.1016/j.est.2020.101339.
|
16 |
YU Chengbin, YOUN J R, SONG Y S. Encapsulated phase change material embedded by graphene powders for smart and flexible thermal response[J]. Fibers and Polymers, 2019, 20(3): 545-554.
|
17 |
董光能, 谢友柏, 虞烈, 等. 相变可控的复合导电自润滑材料的加热特性[J]. 高分子材料科学与工程, 2002(3): 125-128.
|
|
DONG Guangneng, XIE Youbai, YU Lie, et al. Heating characteristics of self-lubricating conducting composites materials with controllable phase transformation[J]. Polymer Materials Science & Engineering, 2002(3): 125-128.
|
18 |
张璐一. 掺加相变材料和碳纤维材料的沥青混凝土路面融雪去冰效果研究[D]. 天津: 河北工业大学, 2015.
|
|
ZHANG Luyi. The study on the effect of melting snow and ice by asphalt concrete pavement filled with phase-change material and carbon fiber material[D]. Tianjin: Hebei University of Technology, 2015.
|
19 |
任苗. 导电相变储热混凝土的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
REN Miao. Preparation and performance research of electrical conductive concrete incorporating phase change thermal storage aggregate[D]. Harbin: Harbin Institute of Technology, 2018.
|
20 |
赵宇轩. 静电纺丝法制备光电调温储能复合纤维与性能研究[D]. 北京: 北京石油化工学院, 2019.
|
|
ZHAO Yuxuan. Performance and properties of photoelectric temperature-regulating energy-storage composite fiber prepared by electrospinning[D]. Beijing: Beijing Institute of Petrochemical Technology, 2019.
|
21 |
LIU Peng, GU Xiaobin, BIAN Liang, et al. Caprice acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(1): 359-368.
|
22 |
徐众, 黄平, 吴恩辉, 等. 膨胀石墨/石蜡复合相变材料的电阻率分析[J]. 储能科学与技术, 2019, 8(2): 371-378.
|
|
XU Zhong, HUANG Ping, WU Enhui, et al. Analysis of resistivity of expanded graphite/paraffin phase change material[J]. Energy Storage Science and Technology, 2019, 8(2): 371-378.
|
23 |
LU Xiang, LIANG Bing, SHENG Xinxin, et al. Enhanced thermal conductivity of polyurethane/wood powder composite phase change materials via incorporating low loading of graphene oxide nanosheets for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 208(5): doi: 10.1016/j.solmat.2019.110391.
|
24 |
王博, 朱孝钦, 胡劲, 等. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
|
|
WANG Bo, ZHU Xiaoqin, HU Jin, et al. Nano-graphite enhanced thermal conductivity of decanoic caid-tetradecyl alcohol composite phase change material[J]. Materials Reports, 2019, 33(22): 3815-3819.
|
25 |
SAEED R, HAMID M, RAMIN H K, et al. Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes[J]. Journal of Thermal Analysis and Calorimetry, 2019, 140: 2505-2518.
|
26 |
YANG Li, CAO Xiaoling, ZHANG Nan, et al. Thermal reliability of typical fatty acids as phase change materials based on 10, 000 accelerated thermal cycles[J]. Sustainable Cities and Society, 2019, 46(3): doi: 10.1016/j.scs.2018.12.008.
|
27 |
SARI A, AL-AHMED A, BICER A, et al. Investigation of thermal properties and enhanced energy storage/release performance of silica fume/myristic acid composite doped with carbon nanotubes[J]. Renewable Energy, 2019, 140(11): 779-788.
|
28 |
XUE Fei, LU Yu, QI Xiaodong, et al. Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities[J]. Chemical Engineering Journal, 2019, 365(11): 20-29.
|
29 |
WEI Xiao, XUE Fei, QI Xiaodong, et al. Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure[J]. Applied Energy, 2019, 236(1): 70-80.
|
30 |
王青青, 范鹏远, 陈玉明, 等. 膨胀石墨/石蜡复合相变材料热-电特性实验研究[J]. 塑料工业, 2018, 46(9): 129-133+137.
|
|
WANG Qingqing, FAN Pengyuan, CHEN Yuming, et al. Experimental study on the thermo-physical and electrical properties of paraffin/expanded graphite composite phase change materials[J]. China Plastics Industry, 2018, 46(9): 129-133+137.
|