储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1807-1823.doi: 10.19799/j.cnki.2095-4239.2024.0033

• 储能材料与器件 • 上一篇    下一篇

钠离子电池软碳基负极的研究进展

所聪(), 王阳峰, 朱紫宸, 杨雁()   

  1. 中石化(大连)石油化工研究院,辽宁 大连 116000
  • 收稿日期:2024-01-10 修回日期:2024-02-02 出版日期:2024-06-28 发布日期:2024-06-26
  • 通讯作者: 杨雁 E-mail:suocong.fshy@sinopec.com;yangyan.fshy@sinopec.com
  • 作者简介:所聪(1996—),女,硕士研究生,研究方向为钠离子电池负极材料及电解液,E-mail:suocong.fshy@sinopec.com
  • 基金资助:
    多级孔复合碳纳米材料的制备及其电化学性能研究(XLYC1907093)

Research progress of soft carbon as negative electrodes in sodium-ion batteries

Cong SUO(), Yangfeng WANG, Zichen ZHU, Yan YANG()   

  1. SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co. , Ltd. , Dalian 116000, Liaoning, China
  • Received:2024-01-10 Revised:2024-02-02 Online:2024-06-28 Published:2024-06-26
  • Contact: Yan YANG E-mail:suocong.fshy@sinopec.com;yangyan.fshy@sinopec.com

摘要:

钠离子电池(SIBs)较商用锂电池而言,具有成本低、资源丰富、倍率性能及低温性能好、安全性高的特点,引起研究界的广泛关注。软碳相比硬碳材料,含碳量更高、成本更低,更具备商业化潜能,但软碳材料存在高温碳化后易石墨化,层间距缩小,不利于钠离子储存的问题。本文综述了近年来软碳材料在钠离子电池负极上的应用进展。首先总结了软碳材料的基本结构以及储钠机理,在此基础上,着重从多孔结构调变、杂原子掺杂、软硬碳复合、交联结构构建4个方面总结了软碳材料结构的优化策略,其中多孔结构调变中介绍了模板碳化法、前驱体结构形成法、物理/化学活化法等方式;杂原子掺杂中介绍了氮、磷、硫原子以及多原子掺杂的改性效果及方法;软硬碳复合中介绍了直接碳化法、热分解法以及NH3处理法等多种复合方法;交联结构构建又分为氧化处理和引入化学交联剂两种方式,并总结了软碳材料最新改性研究进展。最后,对每种结构优化策略进行了利弊分析,并对其未来发展方向进行展望,以期为开发更高效的软碳负极材料提供理论支持。

关键词: 钠离子电池, 软碳, 结构构建, 负极, 存储机制

Abstract:

Compared with commercial lithium-ion batteries, sodium-ion batteries (SIBs) offer advantages such as low cost, abundant resources, good rate performance, excellent low-temperature performance, and high safety, garnering significant interest from the research community. Unlike hard carbon materials, soft carbon materials have a higher carbon content, lower cost, and greater commercial potential. However, these materials tend to graphitize during high-temperature carbonization, reducing the layer spacing, which adversely affects sodium-ion storage. This study reviews the recent advancements in the application of soft carbon materials to the negative electrodes of sodium ions. First, it summarizes the basic structure and sodium storage mechanisms of soft carbon materials. Building on this foundation, this study outlines an optimization strategy for the structural modification of soft carbon materials, focusing on four areas: porous structure modulation, heteroatom doping, composite control, and cross-linked structure construction. In porous structure modulation, techniques such as template carbonization, precursor structure formation, and physical/chemical activation methods are introduced. In heteroatom doping, the paper explores the modification effects and methods involved in nitrogen, phosphorus, sulfur atoms, and polyatomic doping. Composite control is achieved through techniques such as direct carbonization, thermal decomposition, and NH3 treatment methods. The construction of cross-linked structures is examined through oxidation treatment and the introduction of chemical cross-linking agents, summarizing the latest research on soft carbon material modifications. The study concludes by analyzing the advantages and disadvantages of each structural optimization strategy and speculating on future directions for the development of more efficient soft carbon negative electrode materials.

Key words: sodium-ion batteries, soft carbon, structure construction, negative electrodes, storage mechanism

中图分类号: