储能科学与技术 ›› 2024, Vol. 13 ›› Issue (6): 1807-1823.doi: 10.19799/j.cnki.2095-4239.2024.0033
收稿日期:
2024-01-10
修回日期:
2024-02-02
出版日期:
2024-06-28
发布日期:
2024-06-26
通讯作者:
杨雁
E-mail:suocong.fshy@sinopec.com;yangyan.fshy@sinopec.com
作者简介:
所聪(1996—),女,硕士研究生,研究方向为钠离子电池负极材料及电解液,E-mail:suocong.fshy@sinopec.com;
基金资助:
Cong SUO(), Yangfeng WANG, Zichen ZHU, Yan YANG()
Received:
2024-01-10
Revised:
2024-02-02
Online:
2024-06-28
Published:
2024-06-26
Contact:
Yan YANG
E-mail:suocong.fshy@sinopec.com;yangyan.fshy@sinopec.com
摘要:
钠离子电池(SIBs)较商用锂电池而言,具有成本低、资源丰富、倍率性能及低温性能好、安全性高的特点,引起研究界的广泛关注。软碳相比硬碳材料,含碳量更高、成本更低,更具备商业化潜能,但软碳材料存在高温碳化后易石墨化,层间距缩小,不利于钠离子储存的问题。本文综述了近年来软碳材料在钠离子电池负极上的应用进展。首先总结了软碳材料的基本结构以及储钠机理,在此基础上,着重从多孔结构调变、杂原子掺杂、软硬碳复合、交联结构构建4个方面总结了软碳材料结构的优化策略,其中多孔结构调变中介绍了模板碳化法、前驱体结构形成法、物理/化学活化法等方式;杂原子掺杂中介绍了氮、磷、硫原子以及多原子掺杂的改性效果及方法;软硬碳复合中介绍了直接碳化法、热分解法以及NH3处理法等多种复合方法;交联结构构建又分为氧化处理和引入化学交联剂两种方式,并总结了软碳材料最新改性研究进展。最后,对每种结构优化策略进行了利弊分析,并对其未来发展方向进行展望,以期为开发更高效的软碳负极材料提供理论支持。
中图分类号:
所聪, 王阳峰, 朱紫宸, 杨雁. 钠离子电池软碳基负极的研究进展[J]. 储能科学与技术, 2024, 13(6): 1807-1823.
Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823.
表1
不同策略下软碳材料负极的电化学性能"
调控策略 | 材料名称 | 可逆容量 | ICE/% | 倍率性能 | 参考文献 |
---|---|---|---|---|---|
多孔结构 | ZAD-3-800 | 293 mAh/g at 0.05 A/g | 60 | 53 mAh/g at 5A/g | [ |
多孔结构 | MPC | 331 mAh/g at 0.03 A/g | 45 | 103 mAh/g at 0.5A/g | [ |
多孔结构 | 3DHSC | 215 mAh/g at 0.05 A/g | 60 | 121 mAh/g at 1A/g | [ |
杂原子引入 | PCNS1000 | 302 mAh/g at 0.1 A/g | 67 | 175 mAh/g at 0.5A/g | [ |
杂原子引入 | NC-1200 | 201 mAh/g at 0.02 A/g | 49.5 | 85 mAh/g at 0.5A/g | [ |
杂原子引入 | PSC | 275 mAh/g at 0.01 A/g | 66 | 180 mAh/g at 1A/g | [ |
杂原子引入 | SC-600 | 500 mAh/g at 0.02 A/g | 30 | 300 mAh/g at 1A/g | [ |
杂原子引入 | NPSC4-700 | 500 mAh/g at 0.1 A/g | 81 | 162 mAh/g at 1A/g | [ |
软硬碳复合 | HC-0.2P-1000 | 349.9 mAh/g at 0.01 A/g | 60.9 | 294.3 mAh/g at 1A/g | [ |
软硬碳复合 | HC-SC | 306.8 mAh/g at 0.5 A/g | 55 | 144.9 mAh/g at 10A/g | [ |
软硬碳复合 | NFC | 345 mAh/g at 0.1 A/g | 53.4 | 217 mAh/g at 2A/g | [ |
交联结构构建 | HCPOP-ox12 | 312 mAh/g at C/20 | 90 | — | [ |
交联结构构建 | AC | 268.3 mAh/g at 0.03 A/g | 82 | 200 mAh/g at 1C | [ |
交联结构构建 | MCF750 | 272 mAh/g at 0.1 A/g | 90 | 121 mAh/g at 10 A/g | [ |
交联结构构建 | Fe0.25H | 306 mAh/g at 0.025 A/g | 60 | 150 mAh/g at 2 A/g | [ |
1 | LI J B, YAN D, ZHANG X J, et al. ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: A promising anode material for lithium-ion and sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(38): 20428-20438. |
2 | 陈珂君, 范利君. 钴掺杂FeS2的可控制备及储钠特性研究[J]. 储能科学与技术, 2023, 12(10): 3056-3063. |
CHEN K J, FAN L J. Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances[J]. Energy Storage Science and Technology, 2023, 12(10): 3056-3063. | |
3 | 陈娜, 李安琪, 郭子祥, 等. 钠离子电池普鲁士蓝材料结构构建及优化的研究进展[J]. 储能科学与技术, 2023, 12(11): 3340-3351. |
CHEN N, LI A Q, GUO Z X, et al. Research progress on the construction and optimization of Prussian blue material structure for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3340-3351. | |
4 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
5 | KULOVA T L, SKUNDIN A M. From lithium-ion to sodium-ion battery[J]. Russian Chemical Bulletin, 2017, 66(8): 1329-1335. |
6 | ROJO T, HU Y S, FORSYTH M, et al. Sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(17): 1800880. |
7 | ONG S P, CHEVRIER V L, HAUTIER G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9): 3680-3688. |
8 | LI L, ZHENG Y, ZHANG S L, et al. Recent progress on sodium ion batteries: Potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11(9): 2310-2340. |
9 | GEBERT F, KNOTT J, GORKIN R III, et al. Polymer electrolytes for sodium-ion batteries[J]. Energy Storage Materials, 2021, 36: 10-30. |
10 | ZHAO Y, KANG Y Q, WOZNY J, et al. Recycling of sodium-ion batteries[J]. Nature Reviews Materials, 2023, 8(9): 623-634. |
11 | SARKAR S, ROY S, HOU Y L, et al. Recent progress in amorphous carbon-based materials for anodes of sodium-ion batteries: Synthesis strategies, mechanisms, and performance[J]. ChemSusChem, 2021, 14(18): 3693-3723. |
12 | MA C Y, XU T T, WANG Y. Advanced carbon nanostructures for future high performance sodium metal anodes[J]. Energy Storage Materials, 2020, 25: 811-826. |
13 | LU Y X, ZHAO C L, QI X G, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. |
14 | WANG P Z, ZHU X S, WANG Q Q, et al. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(12): 5761-5769. |
15 | DU W S, SUN C, SUN Q. The recent progress of pitch nanoengineering to obtain the carbon anode for high-performance sodium ion batteries[J]. Materials, 2023, 16(13): 4871. |
16 | SIDDIQUI W G M K, NAEEM M, REHMAN N A. Topological characterization of carbon graphite and crystal cubic carbon structures[J]. Molecules, 2017, 22(9): 1496. |
17 | KIPLING J J, SHERWOOD J N, SHOOTER P V, et al. Factors influencing the graphitization of polymer carbons[J]. Carbon, 1964, 1(3): 315, IN19, 319-318, IN20, 320. |
18 | AHMAD S, COPIC D, GEORGE C, et al. Hierarchical assemblies of carbon nanotubes for ultraflexible Li-ion batteries[J]. Advanced Materials, 2016, 28(31): 6705-6710. |
19 | OKAMOTO Y. Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds[J]. The Journal of Physical Chemistry C, 2014, 118(1): 16-19. |
20 | DOEFF M M, MA Y P, VISCO S J, et al. Electrochemical insertion of sodium into carbon[J]. Journal of the Electrochemical Society, 1993, 140(12): 169-170. |
21 | 张鼎, 叶子贤, 刘镇铭, 等. 钠离子电池黑磷基负极材料研究进展[J]. 储能科学与技术, 2023, 12(8): 2482-2490. |
ZHANG D, YE Z X, LIU Z M, et al. Research progress of black phosphorus-based anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(8): 2482-2490. | |
22 | IGARASHI D, TATARA R, FUJIMOTO R, et al. Electrochemical intercalation of rubidium into graphite, hard carbon, and soft carbon[J]. Chemical Science, 2023, 14(40): 11056-11066. |
23 | JIANG M C, SUN N, ALI SOOMRO R, et al. The recent progress of pitch-based carbon anodes in sodium-ion batteries[J]. Journal of Energy Chemistry, 2021, 55: 34-47. |
24 | DOU X W, HASA I, SAUREL D, et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry[J]. Materials Today, 2019, 23: 87-104. |
25 | SAUREL D, SEGALINI J, JAUREGUI M, et al. A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage[J]. Energy Storage Materials, 2019, 21: 162-173. |
26 | QIAO S Y, ZHOU Q W, MA M, et al. Advanced anode materials for rechargeable sodium-ion batteries[J]. ACS Nano, 2023, 17(12): 11220-11252. |
27 | GUAN T T, ZHANG G L, ZHAO J H, et al. Insight into the oxidative reactivity of pitch fractions for predicting and optimizing the oxidation stabilization of pitch[J]. Fuel, 2019, 242: 184-194. |
28 | YU M F, LOURIE O, DYER M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000, 287(5453): 637-640. |
29 | YUAN X M, ZHU B, FENG J K, et al. Biomass bone-derived, N/P-doped hierarchical hard carbon for high-energy potassium-ion batteries[J]. Materials Research Bulletin, 2021, 139: 111282. |
30 | ZHANG F, YAO Y G, WAN J Y, et al. High temperature carbonized grass as a high performance sodium ion battery anode[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 391-397. |
31 | CONG L, TIAN G R, LUO D X, et al. Hydrothermally assisted transformation of corn stalk wastes into high-performance hard carbon anode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2020, 871: 114249. |
32 | SUN N, QIU J S, XU B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate[J]. Advanced Energy Materials, 2022, 12(27): 2200715. |
33 | KIM J H, JUNG M J, KIM M J, et al. Electrochemical performances of lithium and sodium ion batteries based on carbon materials[J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 368-380. |
34 | ZHANG L P, WANG W, LU S F, et al. Carbon anode materials: A detailed comparison between Na-ion and K-ion batteries[J]. Advanced Energy Materials, 2021, 11(11): 2003640. |
35 | STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803. |
36 | JIAN Z L, BOMMIER C, LUO L L, et al. Insights on the mechanism of Na-ion storage in soft carbon anode[J]. Chemistry of Materials, 2017, 29(5): 2314-2320. |
37 | CHENG D J, ZHOU X Q, HU H Y, et al. Electrochemical storage mechanism of sodium in carbon materials: A study from soft carbon to hard carbon[J]. Carbon, 2021, 182: 758-769. |
38 | ANJI REDDY M, HELEN M, GROß A, et al. Insight into sodium insertion and the storage mechanism in hard carbon[J]. ACS Energy Letters, 2018, 3(12): 2851-2857. |
39 | LIU H, JIA M Q, YUE S F, et al. Creative utilization of natural nanocomposites: Nitrogen-rich mesoporous carbon for a high-performance sodium ion battery[J]. Journal of Materials Chemistry A, 2017, 5(20): 9572-9579. |
40 | LIU H, JIA M Q, SUN N, et al. Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(49): 27124-27130. |
41 | LIAO Y L, HU J H, ZHOU X M. Porous hard carbon microtubes from renewable cotton as high-performance anode material for lithium-ion batteries[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 1631-1640. |
42 | HE X J, LI X J, MA H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources, 2017, 340: 183-191. |
43 | HE X J, ZHANG H B, ZHANG H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(46): 19633-19640. |
44 | WENZEL S, HARA T, JANEK J, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy & Environmental Science, 2011, 4(9): 3342-3345. |
45 | LI X S, ZHAO H H, ZHANG C, et al. One-pot fabrication of pitch-derived soft carbon with hierarchical porous structure and rich sp2 carbon for sodium-ion battery[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(17): 21944-21956. |
46 | CAO B, LIU H, XU B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. Journal of Materials Chemistry A, 2016, 4(17): 6472-6478. |
47 | QIU D, CAO T F, ZHANG J, et al. Precise carbon structure control by salt template for high performance sodium-ion storage[J]. Journal of Energy Chemistry, 2019, 31: 101-106. |
48 | DAMODAR D, GHOSH S, USHA RANI M, et al. Hard carbon derived from sepals of Palmyra palm fruit calyx as an anode for sodium-ion batteries[J]. Journal of Power Sources, 2019, 438: 227008. |
49 | ZHU Y Y, WANG Y H, WANG Y T, et al. Research progress on carbon materials as negative electrodes in sodium-and potassium-ion batteries[J]. Carbon Energy, 2022, 4(6): 1182-1213. |
50 | HAO M Y, XIAO N, WANG Y W, et al. Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes[J]. Fuel Processing Technology, 2018, 177: 328-335. |
51 | MISHRA R, PANIGRAHY S, BARMAN S. Single-source-derived nitrogen-doped soft carbons for application as anode for sodium-ion storage[J]. Energy & Fuels, 2022, doi: 10.1021/acs.energyfuels.2c00564. |
52 | MIAO Y L, ZONG J, LIU X J. Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries[J]. Materials Letters, 2017, 188: 355-358. |
53 | WANG X L, LI G, HASSAN F M, et al. Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes[J]. Nano Energy, 2015, 15: 746-754. |
54 | MISHRA R, PANDA P, BARMAN S. Synthesis of sulfur-doped porous carbon for supercapacitor and gas adsorption applications[J]. International Journal of Energy Research, 2022, 46(3): 2585-2600. |
55 | LI Z, CAO Y J, LI G Y, et al. High rate capability of S-doped ordered mesoporous carbon materials with directional arrangement of carbon layers and large d-spacing for sodium-ion battery[J]. Electrochimica Acta, 2021, 366: 137466. |
56 | HE L, SUN Y R, WANG C L, et al. High performance sulphur-doped pitch-based carbon materials as anode materials for sodium-ion batteries[J]. New Carbon Materials, 2020, 35(4): 420-427. |
57 | 肖雪, 李佳纯, 孟祥桐, 等. 硫掺杂针状焦基多孔碳的制备及其储钠性能[J]. 洁净煤技术, 2023, 29(9): 162-170. |
XIAO Xue, LI Jianchun, MENG Xiangtong, et al. Preparation of sulfur-doped needle coke-based porous carbon for robust sodium-ion storage[J]. Clean Coal Technology, 2023, 29(9): 162-170. | |
58 | SUN L, SONG X Y, LIU Y X, et al. Spongy-like N, S-codoped ultrathin layered carbon assembly for realizing high performance sodium-ion batteries[J]. FlatChem, 2021, 28: 100258. |
59 | QI Y H, FAN W Y, NAN G Z. Free-standing, binder-free polyacrylonitrile/asphalt derived porous carbon fiber-A high capacity anode material for sodium-ion batteries[J]. Materials Letters, 2017, 189: 206-209. |
60 | ZHAO P Y, ZHANG J, LI Q, et al. Electrochemical performance of fulvic acid-based electrospun hard carbon nanofibers as promising anodes for sodium-ion batteries[J]. Journal of Power Sources, 2016, 334: 170-178. |
61 | LI Y M, MU L Q, HU Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 2: 139-145. |
62 | YIN X P, ZHAO Y F, WANG X, et al. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage[J]. Small, 2022, 18(5): e2105568. |
63 | XIE F, XU Z, JENSEN A C S, et al. Hard–soft carbon composite anodes with synergistic sodium storage performance[J]. Advanced Functional Materials, 2019, 29(24): 1901072. |
64 | XUE Y C, GAO M Y, WU M R, et al. A promising hard carbon-soft carbon composite anode with boosting sodium storage performance[J]. ChemElectroChem, 2020, 7(19): 4010-4015. |
65 | WANG Y W, XIAO N, WANG Z Y, et al. Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries[J]. Carbon, 2018, 135: 187-194. |
66 | LU Y X, ZHAO C L, QI X G, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. |
67 | DAHER N, HUO D, DAVOISNE C, et al. Impact of preoxidation treatments on performances of pitch-based hard carbons for sodium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(7): 6501-6510. |
68 | SUN Y, LU P, LIANG X, et al. High-yield microstructure-controlled amorphous carbon anode materials through a pre-oxidation strategy for sodium ion batteries[J]. Journal of Alloys and Compounds, 2019, 786: 468-474. |
69 | WANG Y W, XIAO N, WANG Z Y, et al. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chemical Engineering Journal, 2018, doi: 10.1016/j.cej.2018.01.098. |
70 | LIU X, ZHU Y Y, LIU N, et al. Catalytic synthesis of hard/soft carbon hybrids with heteroatom doping for enhanced sodium storage[J]. ChemistrySelect, 2019, 4(12): 3551-3558. |
[1] | 李丹, 马铁, 刘汉浩, 郭丽. 高倍率钠离子电池炭包覆纳米铋负极材料[J]. 储能科学与技术, 2024, 13(6): 1775-1785. |
[2] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[3] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[4] | 姜媛媛, 屠芳芳, 张芳平, 王盈来, 蔡佳文, 杨东辉, 李艳红, 相佳媛, 夏新辉, 傅继澎. 高性能磷酸铁锂电池补锂技术及机制[J]. 储能科学与技术, 2024, 13(5): 1435-1442. |
[5] | 赵毅伟, 张福华, 颜顺, 丁坤, 蓝海枫, 刘辉. 普鲁士蓝类钠离子电池正极材料导电性研究进展[J]. 储能科学与技术, 2024, 13(5): 1474-1486. |
[6] | 石敏, 蒋鹏杰, 徐琛, 贺鑫, 梁宵. 抑制锂金属负极枝晶的电解液调控策略[J]. 储能科学与技术, 2024, 13(5): 1620-1634. |
[7] | 朱璟, 郝峻丰, 孙蔷馥, 张新新, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.2.1—2024.3.31)[J]. 储能科学与技术, 2024, 13(5): 1398-1416. |
[8] | 江成凡, 黄俊, 谢海波. 提高硬碳材料钠离子电池首次库仑效率的研究进展[J]. 储能科学与技术, 2024, 13(3): 825-840. |
[9] | 孙蔷馥, 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.12.1—2024.1.31)[J]. 储能科学与技术, 2024, 13(3): 725-741. |
[10] | 李珂, 郝奕帆, 方振华, 王静, 张松通, 祝夏雨, 邱景义, 明海. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. |
[11] | 郭秀丽, 周小龙, 邹才能, 唐永炳. 水系双离子电池的研究进展与展望[J]. 储能科学与技术, 2024, 13(2): 462-479. |
[12] | 陈珊珊, 郑翔, 王若, 原铭蔓, 彭威, 鲁博明, 张光照, 王朝阳, 王军, 邓永红. 锂离子电池硅基负极电解液添加剂研究进展:挑战与展望[J]. 储能科学与技术, 2024, 13(1): 279-292. |
[13] | 曾坤, 郑晓妍, 龚慧玲, 邹博, 陈凯, 晏忠钠. 基于锂负极的液态金属电池研究进展[J]. 储能科学与技术, 2024, 13(1): 299-310. |
[14] | 徐铖杰, 黄玉林, 林中飞雨, 林志铭, 方辰希, 张卫军, 黄志高, 李加新. 纳米硅的砂磨宏量制备及其碳纤维复合负极的储锂性能研究[J]. 储能科学与技术, 2024, 13(1): 1-11. |
[15] | 廖雅贇, 周峰, 张颖曦, 吕途安, 何阳, 陈晓燕, 霍开富. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||