储能科学与技术 ›› 2024, Vol. 13 ›› Issue (3): 825-840.doi: 10.19799/j.cnki.2095-4239.2023.0751
收稿日期:
2023-10-24
修回日期:
2023-12-08
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
黄俊
E-mail:jiangcf9872@163.com;huangj@gzu.edu.cn
作者简介:
江成凡(1998—),男,硕士研究生,研究方向为钠离子电池硬碳负极材料,E-mail:jiangcf9872@163.com;
Chengfan JIANG(), Jun HUANG(), Haibo XIE
Received:
2023-10-24
Revised:
2023-12-08
Online:
2024-03-28
Published:
2024-03-28
Contact:
Jun HUANG
E-mail:jiangcf9872@163.com;huangj@gzu.edu.cn
摘要:
钠离子电池(SIBs),得益于钠资源的高丰度、分布均匀、较低的成本、优异的低温性能和快充特性等优势,被认为是潜力巨大的大规模储能技术。SIBs的电化学性能很大程度上由电极材料决定,在负极材料中,硬碳(HC)材料由于具有较低的氧化/还原电势、合适的比容量、对环境友好、制造方法简单以及来源广泛等优势,被认为是目前最为理想的SIBs负极材料。然而,HC作为负极材料的SIBs首次库仑效率(ICE)的不足导致在全电池中阴极的钠被过度消耗,因而严重限制了HC在SIBs的实际应用。因此,结合导致硬碳材料ICE较低的关键科学问题,本文总结、分析了提高SIBs硬碳负极材料ICE的研究进展,包括调节热解温度、减少缺陷、孔隙调控以及金属原子催化调控碳层这4种方式。并简要介绍了硬碳材料的碳层间距、缺陷以及孔隙这3个基本结构,以及不同的结构影响钠离子储存行为的最新研究进展,论述了不同类型HC负极材料的设计思路及其商业化进展,最后分析探讨了SIBs硬碳负极材料的发展方向。
中图分类号:
江成凡, 黄俊, 谢海波. 提高硬碳材料钠离子电池首次库仑效率的研究进展[J]. 储能科学与技术, 2024, 13(3): 825-840.
Chengfan JIANG, Jun HUANG, Haibo XIE. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 825-840.
1 | HUANG J, YUAN K, CHEN Y W. Wide voltage aqueous asymmetric supercapacitors: Advances, strategies, and challenges[J]. Advanced Functional Materials, 2022, 32(4): 2108107. |
2 | NISHI Y. The development of lithium ion secondary batteries[J]. The Chemical Record, 2001, 1(5): 406-413. |
3 | BLOMGREN G E. The development and future of lithium ion batteries[J]. Journal of The Electrochemical Society, 2016, 164(1): A5019. |
4 | YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800. |
5 | ROBERTS S, KENDRICK E. The re-emergence of sodium ion batteries: testing, processing, and manufacturability[J]. Nanotechnology, Science and Applications, 2018: 23-33. |
6 | LU Z, WANG J, FENG W, et al. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries[J]. Advanced Materials, 2023: 2211461. |
7 | JIN Q, WANG K, FENG P, et al. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries[J]. Energy Storage Materials, 2020, 27: 43-50. |
8 | DING J, ZHANG H, ZHOU H, et al. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes[J]. Advanced Materials, 2019, 31(30): 1900429. |
9 | XU Y S, GUO S J, TAO X S, et al. High-performance cathode materials for potassium-ion batteries: Structural design and electrochemical properties[J]. Advanced Materials, 2021, 33(36): 2100409. |
10 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
11 | SUN N, QIU J, XU B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate[J]. Advanced Energy Materials, 2022, 12(27): 2200715. |
12 | BOMMIER C, SURTA T W, DOLGOS M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892. |
13 | IRISARRI E, PONROUCH A, PALACIN M R. Hard carbon negative electrode materials for sodium-ion batteries[J]. Journal of The Electrochemical Society, 2015, 162(14): A2476. |
14 | DOU X, HASA I, SAUREL D, et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry[J]. Materials Today, 2019, 23: 87-104. |
15 | CHU Y, ZHANG J, ZHANG Y, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective[J]. Advanced Materials, 2023: 2212186. |
16 | CAO Y, XIAO L, SUSHKO M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano letters, 2012, 12(7): 3783-3787. |
17 | SUN N, GUAN Z, LIU Y, et al. Extended "adsorption-insertion" model: a new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1901351. |
18 | KATSUYAMA Y, NAKAYASU Y, KOBAYASHI H, et al. Rational route for increasing intercalation capacity of hard carbons as sodium-ion battery anodes[J]. ChemSusChem, 2020, 13(21): 5762-5768. |
19 | KUBOTA K, SHIMADZU S, YABUUCHI N, et al. Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion[J]. Chemistry of Materials, 2020, 32(7): 2961-2977. |
20 | GUO R, LV C, XU W, et al. Effect of intrinsic defects of carbon materials on the sodium storage performance[J]. Advanced Energy Materials, 2020, 10(9): 1903652. |
21 | GAN Q, QIN N, GU S, et al. Extra sodiation sites in hard carbon for high performance sodium ion batteries[J]. Small Methods, 2021, 5(9): 2100580. |
22 | WANG G, SHAO M, DING H, et al. Multiple active sites of carbon for high-rate surface-capacitive sodium-ion storage[J]. Angewandte Chemie International Edition, 2019, 58(38): 13584-13589. |
23 | SUN F, WANG H, QU Z, et al. Carboxyl‐dominant oxygen rich carbon for improved sodium ion storage: synergistic enhancement of adsorption and intercalation mechanisms[J]. Advanced Energy Materials, 2021, 11(1): 2002981. |
24 | DERINGER V L, MERLET C, HU Y, et al. Towards an atomistic understanding of disordered carbon electrode materials[J]. Chemical communications, 2018, 54(47): 5988-5991. |
25 | LU P, SUN Y, XIANG H, et al. 3D amorphous carbon with controlled porous and disordered structures as a highrate anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): 1702434. |
26 | SHEN F, LUO W, DAI J, et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(14): 1600377. |
27 | DAHN J R, XING W, GAO Y. The "falling cards model" for the structure of microporous carbons[J]. Carbon, 1997, 35(6): 825-830. |
28 | KITSU L L, ANTONIO E N, MARTINEZ T D, et al. Revealing the sodium storage mechanisms in hard carbon pores[J]. Advanced Energy Materials, 2023, 2302171. |
29 | ZHANG M, LI Y, WU F, et al. Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode[J]. Nano Energy, 2021, 82: 105738. |
30 | LI Z, CHEN Y, JIAN Z, et al. Defective hard carbon anode for Na-ion batteries[J]. Chemistry of Materials, 2018, 30(14): 4536-4542. |
31 | WANG Z, FENG X, BAI Y, et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries[J]. Advanced Energy Materials, 2021, 11(11): 2003854. |
32 | LI Q, LIU X, TAO Y, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review, 2022, 9(8): nwac084. |
33 | XU T, QIU X, ZHANG X, et al. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance[J]. Chemical Engineering Journal, 2023, 452: 139514. |
34 | MARSH H, REINOSO F R. Activated carbon[M]. Elsevier, 2006. |
35 | LIU Y, MERINOV B V, GODDARD III W A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences, 2016, 113(14): 3735-3739. |
36 | TSAI P, CHUNG S C, LIN S, et al. Ab initio study of sodium intercalation into disordered carbon[J]. Journal of Materials Chemistry A, 2015, 3(18): 9763-9768. |
37 | LIANG Z, FAN X, ZHENG W, et al. Adsorption and formation of small Na clusters on pristine and double-vacancy graphene for anodes of Na-ion batteries[J]. ACS applied materials & interfaces, 2017, 9(20): 17076-17084. |
38 | SUN D, LUO B, WANG H, et al. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency[J]. Nano Energy, 2019, 64: 103937. |
39 | LIN Q, ZHANG J, KONG D, et al. Deactivating defects in graphenes with Al2O3 nanoclusters to produce long-life and high-rate sodium-ion batteries[J]. Advanced Energy Materials, 2019, 9(1): 1803078. |
40 | GHIMBEU C M, GÓRKA J, SIMONE V, et al. Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects[J]. Nano Energy, 2018, 44: 327-335. |
41 | HANKEL M, YE D, WANG L, et al. Lithium and sodium storage on graphitic carbon nitride[J]. The Journal of Physical Chemistry C, 2015, 119(38): 21921-21927. |
42 | WANG X, LI G, HASSAN F M, et al. Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes[J]. Nano Energy, 2015, 15: 746-754. |
43 | DENG X, XIE K, LI L, et al. Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries[J]. Carbon, 2016, 107: 67-73. |
44 | QIE L, CHEN W, XIONG X, et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Advanced science, 2015, 2(12): doi: 10.1002/advs.201500195. |
45 | GUO M, HUANG J, KONG X, et al. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries[J]. New Carbon Materials, 2016, 31(3): 352-362. |
46 | WU F, DONG R, BAI Y, et al. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries[J]. ACS applied materials & interfaces, 2018, 10(25): 21335-21342. |
47 | LI Z, MA L, SURTA T W, et al. High capacity of hard carbon anode in Na-ion batteries unlocked by PO x Do**[J]. ACS Energy Letters, 2016, 1(2): 395-401. |
48 | SONG M, YI Z, XU R, et al. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Materials, 2022, 51: 620-629. |
49 | ZHENG Y, LU Y, QI X, et al. Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode[J]. Energy Storage Materials, 2019, 18: 269-279. |
50 | HE X X, LAI W H, LIANG Y, et al. Achieving all-plateau and high-capacity sodium insertion in topological graphitized carbon[J]. Advanced Materials, 2023: 2302613. |
51 | YU Z L, XIN S, YOU Y, et al. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage[J]. Journal of the American Chemical Society, 2016, 138(45): 14915-14922. |
52 | GE P, HOU H, CAO X, et al. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries[J]. Advanced Science, 2018, 5(6): 1800080. |
53 | ZHAO J, HE X X, LAI W H, et al. Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries[J]. Advanced Energy Materials, 2023: 2300444. |
54 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
55 | TANG Z, WANG H, WU P F, et al. Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries[J]. Angewandte Chemie, 2022, 134(18): e202200475. |
56 | 张俊, 李琦, 陶莹, 等. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
ZHANG J, LI Q, TAO Y, et al. Sieving carbons for sodium ion batteries: origin and progress[J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. | |
57 | DONG Y, YUAN S, ZHAO W, et al. Tailoring natural anthracite carbon materials towards considerable electrochemical properties with exploration of ester/ether-based electrolyte[J]. Journal of Materials Chemistry A, 2023, 11(17): 9668-9681. |
58 | JIANG N, CHEN L, JIANG H, et al. Introducing the solvent co-intercalation mechanism for hard carbon with ultrafast sodium storage[J]. Small, 2022, 18(15): 2108092. |
59 | XIAO B, SOTO F A, GU M, et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes[J]. Advanced Energy Materials, 2018, 8(24): 1801441. |
60 | DOSE W M, JOHNSON C S. Cathode pre-lithiation/sodiation for next-generation batteries[J]. Current Opinion in Electrochemistry, 2022, 31: 100827. |
61 | MOEEZ I, JUNG H G, LIM H D, et al. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41394-41401. |
62 | MA R, FAN L, CHEN S, et al. Offset initial sodium loss to improve coulombic efficiency and stability of sodium dual-ion batteries[J]. ACS applied materials & interfaces, 2018, 10(18): 15751-15759. |
63 | LIU W, CHEN X, ZHANG C, et al. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na[J]. ACS applied materials & interfaces, 2019, 11(26): 23207-23212. |
64 | LIU M, YANG Z, SHEN Y, et al. Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(9): 5639-5647. |
65 | PARK K, YU B C, GOODENOUGH J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chemistry of Materials, 2015, 27(19): 6682-6688. |
66 | TANG J, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 396: 476-482. |
67 | 陈杰, 陈伟伦, 张旭, 等. 钠离子电池预钠化技术研究进展[J]. 储能科学与技术, 2022, 11(11): 3487-3496. |
CHEN J, CHEN W L, ZHANG X, et al. Research progress in pre-sodium technology for sodium ion batteries[J]. Energy Storage Science and Technology. 2022, 11(11): 3487-3496. |
[1] | 武美玲, 牛磊, 李世友, 赵冬妮. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. |
[2] | 李珂, 郝奕帆, 方振华, 王静, 张松通, 祝夏雨, 邱景义, 明海. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. |
[3] | 孙晓云, 王德仁, 孟琳, 任忠山, 李森森. 基于高面容量锌溴液流电池的电堆结构及负极材料设计与优化[J]. 储能科学与技术, 2024, 13(2): 370-380. |
[4] | 郝胐, 王俊明, 董春伟, 尉琳琳, 董阳, 梁文斌, 苏志江. 中空三维结构的硅碳负极的构筑及性能研究[J]. 储能科学与技术, 2024, 13(1): 325-332. |
[5] | 蔡浩然, 闫利珏, 杨旭, 潘慧霖. O3/P2-Na x Ni1/3Co1/3Mn1/3O2 复合相正极材料的结构演变与储钠性能[J]. 储能科学与技术, 2023, 12(9): 2707-2714. |
[6] | 朱江恬, 张圆, 罗意彬, 杨慧婷, 李杰, 孙小琴. 基于相变材料蓄热的5G通信基站柜体优化[J]. 储能科学与技术, 2023, 12(9): 2789-2798. |
[7] | 张鼎, 叶子贤, 刘镇铭, 易群, 史利娟, 郭慧娟, 黄毅, 王莉, 何向明. 钠离子电池黑磷基负极材料研究进展[J]. 储能科学与技术, 2023, 12(8): 2482-2490. |
[8] | 张梓楠, 陈剑. Nb掺杂Na3V2O2 (PO4 ) 2F空心微球钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2023, 12(8): 2370-2381. |
[9] | 昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318. |
[10] | 冯准. 基于石墨烯电极的埃洛石/聚苯胺超高柔性复合电极[J]. 储能科学与技术, 2023, 12(6): 1794-1803. |
[11] | 李晓庆, 范玉泽, 刘晓燕. 骨架结构对固液相变蓄热性能影响的LBM研究[J]. 储能科学与技术, 2023, 12(6): 1774-1783. |
[12] | 张吉栋, 杨展, 黄建国. 基于天然纤维素物质的C/TiO2/CuMoO4 微-纳结构复合纤维材料构筑及其电化学性能[J]. 储能科学与技术, 2023, 12(5): 1616-1624. |
[13] | 胡川, 胡志伟, 李振东, 李帅, 王豪, 王丽平. 调控LiPF6 基电解液溶剂化结构稳定富锂锰基正极界面[J]. 储能科学与技术, 2023, 12(5): 1604-1615. |
[14] | 边煜华, 刘朝孟, 高宣雯, 李健国, 王达, 李尚倬, 骆文彬. 醚基电解液中CoS2/NC作为钠离子电池高性能阳极的原因分析[J]. 储能科学与技术, 2023, 12(5): 1500-1509. |
[15] | 赵玉文, 杨欢, 郭俊朋, 张毅, 孙琦, 张志佳. 磁性金属元素在钠离子电池中的应用[J]. 储能科学与技术, 2023, 12(5): 1332-1347. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||