储能科学与技术 ›› 2023, Vol. 12 ›› Issue (6): 1774-1783.doi: 10.19799/j.cnki.2095-4239.2022.0776

• 储能材料与器件 • 上一篇    下一篇

骨架结构对固液相变蓄热性能影响的LBM研究

李晓庆1,2(), 范玉泽1, 刘晓燕1()   

  1. 1.东北石油大学,黑龙江 大庆 163318
    2.常熟理工学院,江苏 常熟 215500
  • 收稿日期:2023-01-03 修回日期:2023-02-15 出版日期:2023-06-05 发布日期:2023-06-21
  • 通讯作者: 刘晓燕 E-mail:li964499@126.com;Liu_xydq@163.com
  • 作者简介:李晓庆(1982—),女,博士,副教授,研究方向为相变传热及多相流动技术,E-mail:li964499@126.com
  • 基金资助:
    国家自然科学基金(52076036)

Investigation of the effect of skeleton structure on the thermal energy storage performance of solid-liquid phase change using LBM

Xiaoqing LI1,2(), Yuze FAN1, Xiaoyan LIU1()   

  1. 1.Northeast Petroleum University, Daqing 163318, Heilongjiang, China
    2.Changshu Institute of Technology, Changshu 215500, Jiangsu, China
  • Received:2023-01-03 Revised:2023-02-15 Online:2023-06-05 Published:2023-06-21
  • Contact: Xiaoyan LIU E-mail:li964499@126.com;Liu_xydq@163.com

摘要:

固液相变材料通过潜热的形式存储能量,被大规模应用于热能存储领域,然而传统相变材料的热导率普遍较小,添加高热导率的多孔骨架可以提高蓄热性能。为了探究骨架结构对蓄热性能的影响,本工作采用基于焓法的格子Boltzmann双分布模型,在孔隙尺度上研究了骨架孔隙率和方向生长概率对熔化过程的影响,提出了无量纲蓄热功率作为评价参数。结果表明:随着孔隙率的降低,复合材料的熔化速率加快,无量纲蓄热功率增大。当孔隙率处于0.80以下时,无量纲蓄热功率较纯相变材料得到提高。选择合适的方向生长概率可以有效改善换热速率。主生长方向为1,3方向的骨架所需完全熔化时间较均匀骨架时缩短13.9%。本工作为多孔骨架复合相变材料的设计和应用提供了理论依据和数据参考。

关键词: 固液相变, 多孔介质, 格子Boltzmann方法, 骨架结构

Abstract:

The solid-liquid phase change material (PCM) stores energy in the form of latent heat and is widely used for thermal energy storage. However, traditional PCMs generally exhibit low thermal conductivity. Adding a porous skeleton with high thermal conductivity can improve the thermal storage performance of these materials. To investigate the effect of the porous skeleton structure on thermal storage performance, we examined the effect of the porosity and directional growth probability on the melting process at the pore scale using an enthalpy-based lattice Boltzmann method with a double distribution function model. A dimensionless thermal storage power parameter was proposed to evaluate performance. Our results showed that as the porosity decreases, the melting rate of the composite increases, and the dimensionless heat storage power is enhanced. When the porosity is below 0.80, the dimensionless thermal storage power improves compared to pure PCM. By selecting an appropriate directional growth probability, the heat transfer rate can be effectively improved. The complete melting time for a skeleton with the main growth direction in the 1,3 direction is 13.9% shorter than for a homogeneous skeleton. This work provides a theoretical basis and data reference for designing and applying porous skeleton composite PCMs.

Key words: solid-liquid phase change, porous media, Lattice Boltzmann method, skeleton structur

中图分类号: