1 |
HEKIMOĞLU G, SARı A. A review on phase change materials (PCMs) for thermal energy storage implementations[J]. Materials Today: Proceedings, 2022, 58: 1360-1367.
|
2 |
HE W, ZHANG J F, LI H L, et al. Optimal thermal management of server cooling system based cooling tower under different ambient temperatures[J]. Applied Thermal Engineering, 2022, 207: doi:10.1016/j.applthermaleng.2022.118176.
|
3 |
肖昌仁, 朱胜天, 张国庆, 等. 功能高分子在相变蓄热材料中的应用研究进展[J]. 功能高分子学报, 2021, 34(4): 336-351.
|
|
XIAO C R, ZHU S T, ZHANG G Q, et al. Application research progress of functional polymers in phase change thermal storage materials[J]. Journal of Functional Polymers, 2021, 34(4): 336-351.
|
4 |
HEMMAT ESFE M, BAHIRAEI M, HAJBARATI H, et al. A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics[J]. Applied Thermal Engineering, 2020, 178: doi: 10.1016/j.applthermaleng.2020.115487.
|
5 |
VENGADESAN E, SENTHIL R. A review on recent developments in thermal performance enhancement methods of flat plate solar air collector[J]. Renewable and Sustainable Energy Reviews, 2020, 134: doi: 10.1016/j.rser.2020.110315.
|
6 |
LI Z, GARIBOLDI E. Review on the temperature-dependent thermophysical properties of liquid paraffins and composite phase change materials with metallic porous structures[J]. Materials Today Energy, 2021, 20: doi: 10.1016/j.mtener.2021.100642.
|
7 |
HABIBISHANDIZ M, SAGHIR M Z. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms[J]. Thermal Science and Engineering Progress, 2022, 30: doi: 10.1016/j.tsep.2022.101267.
|
8 |
SWEIDAN A H, HEIDER Y, MARKERT B. Modeling of PCM-based enhanced latent heat storage systems using a phase-field-porous media approach[J]. Continuum Mechanics and Thermodynamics, 2020, 32(3): 861-882.
|
9 |
MEHRYAN S A M, GHALAMBAZ M, VAEZI M, et al. Non-Newtonian phase change study of nano-enhanced n-octadecane comprising mesoporous silica in a porous medium[J]. Applied Mathematical Modelling, 2021, 97: 463-482.
|
10 |
MEHRYAN S A M, AYOUBI-AYOUBLOO K, SHAHABADI M, et al. Conjugate phase change heat transfer in an inclined compound cavity partially filled with a porous medium: A deformed mesh approach[J]. Transport in Porous Media, 2020, 132(3): 657-681.
|
11 |
HUO Y T, YIN M B, RAO Z H. Heat transfer enhanced by angle-optimized fan-shaped porous medium in phase change thermal energy storage system at pore scale[J]. International Journal of Thermal Sciences, 2022, 172: doi: 10.1016/j.ijthermalsci.2021. 107363.
|
12 |
GHALAMBAZ M, ZHANG J. Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam[J]. International Journal of Heat and Mass Transfer, 2020, 146: doi: 10.1016/j.ijheatmasstransfer.2019.118832.
|
13 |
HUANG R Z, WU H Y, CHENG P. A new lattice Boltzmann model for solid-liquid phase change[J]. International Journal of Heat and Mass Transfer, 2013, 59: 295-301.
|
14 |
HUANG R Z, WU H Y. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change[J]. Journal of Computational Physics, 2015, 294: 346-362.
|
15 |
LI D, REN Q L, TONG Z X, et al. Lattice Boltzmann models for axisymmetric solid-liquid phase change[J]. International Journal of Heat and Mass Transfer, 2017, 112: 795-804.
|
16 |
高一倩, 柳毅, 李凌. 基于LBM的三角腔固液相变模拟[J]. 储能科学与技术, 2020, 9(6): 1798-1805.
|
|
GAO Y Q, LIU Y, LI L. Numerical simulation of natural convection melting inside a triangular cavity using Lattice Boltzmann method[J]. Energy Storage Science and Technology, 2020, 9(6): 1798-1805.
|
17 |
郝金鹏, 杜迎春, 伍弘, 等. 侧壁面正弦加热条件下电场强化固液相变研究[J]. 储能科学与技术, 2022, 11(5): 1446-1454.
|
|
HAO J P, DU Y C, WU H, et al. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution[J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454.
|
18 |
CHEN D Y, RIAZ A, AUTE V C, et al. A solid-liquid model based on lattice Boltzmann method for phase change material melting with porous media in cylindrical heat exchangers[J]. Applied Thermal Engineering, 2022, 207: doi: 10.1016/j.applthermaleng. 2022.118080.
|
19 |
HUANG J X, HE K, WANG L. Pore-scale investigation on natural convection melting in a square cavity with gradient porous media[J]. Energies, 2021, 14(14): 4274.
|
20 |
JOURABIAN M, ALI RABIENATAJ DARZI A, ALI AKBARI O, et al. The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 548: doi: 1016/j.physa.2019.123887.
|
21 |
MABROUK R, NAJI H, DHAHRI H, et al. Insight into foam pore effect on phase change process in a plane channel under forced convection using the thermal lattice boltzmann method[J]. Energies, 2020, 13(15): doi: 10.3390/en13153979.
|
22 |
贾兴龙. 基于LBM多孔介质腔体内固液相变三维数值研究[D]. 济南: 山东建筑大学, 2021.
|
|
JIA X L. Three-dimensional numerical study on solid-liquid phase change in porous media cavity based on LBM[D].Jinan: Shandong Jianzhu University, 2021.
|
23 |
SHIRBANI M, SIAVASHI M, HOSSEINI M, et al. Improved thermal energy storage with metal foam enhanced phase change materials considering various pore arrangements: A pore-scale parallel lattice Boltzmann solution[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104744.
|
24 |
YIN M B, WANG M, HUO Y T, et al. Simulation of solid-liquid phase change at pore scale using lattice Boltzmann method with central moments in thermal energy storage[J]. Journal of Energy Storage, 2022, 49: doi: 10.1016/j.est.2022.104116.
|
25 |
LIU Q, FENG X B, HE Y L, et al. Three-dimensional multiple-relaxation-time lattice Boltzmann models for single-phase and solid-liquid phase-change heat transfer in porous media at the REV scale[J]. Applied Thermal Engineering, 2019, 152: 319-337.
|
26 |
WU W, ZHANG S L, WANG S F. A novel lattice Boltzmann model for the solid-liquid phase change with the convection heat transfer in the porous media[J]. International Journal of Heat and Mass Transfer, 2017, 104: 675-687.
|
27 |
LI X Y, MA T, LIU J, et al. Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method[J]. Applied Energy, 2018, 222: 92-103.
|
28 |
LI X Y, ZHU Z L, XU Z R, et al. A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process[J]. Applied Energy, 2019, 254: doi: 10.1016/j.apenergy.2019.113507.
|
29 |
GUO Z L, SHI B C, ZHENG C G. A coupled lattice BGK model for the Boussinesq equations[J]. International Journal for Numerical Methods in Fluids, 2002, 39(4): 325-342.
|
30 |
SHI B C, GUO Z L. Lattice Boltzmann model for nonlinear convection-diffusion equations[J]. Physical Review E, 2009, 79: doi: 10.1103/physreve.79.016701.
|
31 |
YOON H S, JUNG J H, LEE H S, et al. Effect of thermal boundary condition of an inner cube on three-dimensional natural convection in a cubical[J]. Journal of Mechanical Science and Technology, 2015, 29(10): 4527-4543.
|
32 |
HOUSE J M, BECKERMANN C, SMITH T F. Effect of a centered conducting body on natural convection heat transfer in an enclosure[J]. Numerical Heat Transfer, Part A: Applications, 1990, 18(2): 213-225.
|
33 |
林涛. 多孔介质内单相流动与传热的格子Boltzmann数值研究[D]. 东营: 中国石油大学(华东), 2016.
|
|
LIN T. Lattice Boltzmann numerical study on single-phase flow and heat transfer in porous media[D].Dongying: China University of Petroleum (Huadong), 2016.
|