储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 525-543.doi: 10.19799/j.cnki.2095-4239.2024.0663

• 储能材料与器件 • 上一篇    下一篇

铁基普鲁士蓝类似物钠离子电池正极材料研究进展

张李帅(), 张艺菲, 马伊扬, 赵思博, 刘洪全, 石盛庭, 钟艳君()   

  1. 四川大学化学工程学院,教育部磷资源综合利用与清洁加工工程研究中心,四川 成都 610065
  • 收稿日期:2024-07-17 修回日期:2024-08-03 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 钟艳君 E-mail:3185414642@qq.com;yjzhong@scu.edu.cn
  • 作者简介:张李帅(2003—),男,本科,研究方向为化学工程与工艺,E-mail:3185414642@qq.com
  • 基金资助:
    国家自然科学基金青年项目(22109107);四川大学大学生创新计划项目(C2024129081);四川省重点研发计划(2023YFS0475)

Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues

Lishuai ZHANG(), Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG()   

  1. School of Chemical Engineering, Sichuan University, Engineering Research Center for Phosphorus Resources Development and Clean Utilization of the Ministry of Education, Chengdu 610065, Sichuan, China
  • Received:2024-07-17 Revised:2024-08-03 Online:2025-02-28 Published:2025-03-18
  • Contact: Yanjun ZHONG E-mail:3185414642@qq.com;yjzhong@scu.edu.cn

摘要:

锂资源紧缺推动了钠离子电池的研究热潮,普鲁士蓝类似物(PBAs)因具有低成本、快速离子传输、结构稳定和环境友好等优势,成为钠离子电池正极材料的热门选择。特别是铁基普鲁士蓝类似物(Fe-PBAs),因铁资源丰富,工业化应用前景十分广阔。本文分析了Fe-PBAs的结构特征、电化学特性,全面梳理了该材料在制备方法与电化学性能提升策略上的最新研究成果。抑制[Fe(CN)6]空位缺陷的产生和结晶水的引入,并激活低自旋态Fe的电化学活性,是提升Fe-PBAs电化学性能的关键。在制备方法上,综述了共沉淀法、水热法及球磨法等主流技术路径的最新研究进展,展现了Fe-PBAs制备技术的多样性和发展潜力。针对Fe-PBAs的电化学性能提升,结合最新研究成果,系统总结了离子掺杂、形貌结构调控、表面包覆改性、合成流程优化以及电解液优化等策略的增效机制、应用效果与潜在局限性。最后,对Fe-PBAs的未来发展趋势与方向提出了展望,强调了持续优化制备工艺,深入改性拓展新路径,AI技术赋能以及新型反应器应用的重要性。旨在为Fe-PBAs正极材料乃至钠离子电池领域的研究与应用提供有力参考。

关键词: 钠离子电池, 正极材料, 铁基普鲁士蓝类似物, 电化学性能

Abstract:

The shortage of lithium resources has spurred a research boom in sodium-ion batteries, with Prussian blue analogs (PBAs) becoming a popular choice for cathode materials due to their low cost, fast ion transport, structural stability, and environmental friendliness. Notably, iron-based PBAs(Fe-PBAs) are promising for industrial applications due to the abundance of iron resources. In this study, the structural characteristics, electrochemical reaction properties, and the existing challenges of Fe-PBAs were analyzed, comprehensively reviewing the latest research achievements in synthesis methods and strategies for enhancing electrochemical performance. Optimizing the electrochemical performance of Fe-PBAs hinges upon effectively inhibiting the generation of [Fe(CN)6] vacancies defect, the introduction of crystallization water, and activating the electrochemical activity of low-spin Fe. In terms of synthesis methods, the latest advancements in mainstream technological pathways such as coprecipitation, hydrothermal synthesis, and ball milling, showcasing the diversity and development potential of Fe-PBAs preparation techniques were reviewed. To enhance the electrochemical performance of Fe-PBAs, this study systematically summarize the enhancement mechanisms, application effects, and potential limitations of strategies such as ion doping, morphology and structure regulation, surface coating modification, synthesis process optimization, and electrolyte optimization, based on the latest research findings. Finally, this study discuss the future trends and directions for the development of Fe-PBAs, emphasizing the importance of continuous optimization of manufacturing processes, exploring new avenues for in-depth modification and enhancement, leveraging AI technology, and applying novel reactor technologies. This study aims to provide valuable references for research and applications in the field of Fe-PBAs cathode materials and sodium-ion batteries.

Key words: sodium-ion batteries, cathode materials, iron-based Prussian blue analogues, electrochemical performance

中图分类号: