1 |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. DOI: 10.1021/ja3091438.
|
2 |
CHENG X B, HUANG J Q, ZHANG Q. Review—Li metal anode in working lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2017, 165(1): A6058-A6072. DOI: 10.1149/2.0111801jes.
|
3 |
KANNAN S K, JOSEPH J, JOSEPH M G. Review and perspectives on advanced binder designs incorporating multifunctionalities for lithium-sulfur batteries[J]. Energy & Fuels, 2023, 37(9): 6302-6322. DOI: 10.1021/acs.energyfuels.3c00155.
|
4 |
SEH Z W, SUN Y M, ZHANG Q F, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605-5634. DOI: 10.1039/c5cs00410a.
|
5 |
HU B, XU J, FAN Z J, et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes[J]. Advanced Energy Materials, 2023, 13(10): 2203540. DOI: 10.1002/aenm.202203540.
|
6 |
李顺, 黄建国, 何桂金. 木质素基碳/硫纳米球复合材料作为高性能锂硫电池正极材料[J]. 储能科学与技术, 2024, 13(1): 270-278. DOI: 10.19799/j.cnki.2095-4239.2023.0524.
|
|
LI S, HUANG J G, HE G J. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. DOI: 10.19799/j.cnki.2095-4239.2023.0524.
|
7 |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29. DOI: 10.1038/nmat3191.
|
8 |
HE F, LI K, YIN C, et al. A combined theoretical and experimental study on the oxygenated graphitic carbon nitride as a promising sulfur host for lithium-sulfur batteries[J]. Journal of Power Sources, 2018, 373: 31-39. DOI: 10.1016/j.jpowsour.2017.10.095.
|
9 |
KONG S Z, CAI D, LI G F, et al. Hydrogen-substituted graphdiyne/graphene as an sp/sp2 hybridized carbon interlayer for lithium-sulfur batteries[J]. Nanoscale, 2021, 13(6): 3817-3826. DOI: 10.1039/d0nr07878f.
|
10 |
YANG Y, ZHENG G Y, CUI Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032. DOI: 10.1039/C2CS35256G.
|
11 |
胡策军, 杨积瑾, 王航超, 等. 锂硫电池安全性问题现状及未来发展态势[J]. 储能科学与技术, 2018, 7(6): 1082-1093. DOI: 10.12028/j.issn.2095-4239.2018.0172.
|
|
HU C J, YANG J J, WANG H C, et al. Research progress of safe lithium sulfur batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1082-1093. DOI: 10.12028/j.issn.2095-4239.2018.0172.
|
12 |
ZHANG H, ONO L K, TONG G Q, et al. Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge[J]. Nature Communications, 2021, 12(1): 4738. DOI: 10.1038/s41467-021-24976-y.
|
13 |
WANG B, WANG L, ZHANG B, et al. Niobium diboride nanoparticles accelerating polysulfide conversion and directing Li2S nucleation enabled high areal capacity lithium-sulfur batteries[J]. ACS Nano, 2022, 16(3): 4947-4960. DOI: 10.1021/acsnano.2c01179.
|
14 |
WANG Z Y, GE H L, LIU S, et al. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries[J]. Energy & Environmental Materials, 2023, 6(3): 12358. DOI: 10.1002/eem2.12358.
|
15 |
JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. DOI: 10.1038/nmat2460.
|
16 |
ZHU J Y, WANG L X, GAN X M, et al. Graphene quantum dot inlaid carbon nanofibers: Revealing the edge activity for ultrahigh rate pseudocapacitive energy storage[J]. Energy Storage Materials, 2022, 47: 158-166. DOI: 10.1016/j.ensm.2022.02.015.
|
17 |
HUANG J Q, ZHANG Q, WEI F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects[J]. Energy Storage Materials, 2015, 1: 127-145. DOI: 10.1016/j.ensm.2015.09.008.
|
18 |
JEONG Y C, KIM J H, NAM S, et al. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707411. DOI: 10.1002/adfm.201707411.
|
19 |
LI S, LUO Z, LI L, et al. Recent progress on electrolyte additives for stable lithium metal anode[J]. Energy Storage Materials, 2020, 32: 306-319. DOI: 10.1016/j.ensm.2020.07.008.
|
20 |
WANG D D, LIU H D, LI M Q, et al. A long-lasting dual-function electrolyte additive for stable lithium metal batteries[J]. Nano Energy, 2020, 75: 104889. DOI: 10.1016/j.nanoen.2020.104889.
|
21 |
LIN Z, LIANG C D. Lithium-sulfur batteries: From liquid to solid cells[J]. Journal of Materials Chemistry A, 2015, 3(3): 936-958. DOI: 10.1039/C4TA04727C.
|
22 |
GUO W, ZHANG W Y, SI Y B, et al. Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery[J]. Nature Communications, 2021, 12(1): 3031. DOI: 10.1038/s41467-021-23155-3.
|
23 |
YEŞILOT S, KÜÇÜKKÖYLÜ S, MUTLU T, et al. Halogen-free polyphosphazene-based flame retardant cathode materials for Li-S batteries[J]. Energy Technology, 2021, 9(12): 2100563. DOI: 10.1002/ente.202100563.
|
24 |
YANG W, YANG W, SUN B, et al. Mixed lithium oxynitride/oxysulfide as an interphase protective layer to stabilize lithium anodes for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39695-39704. DOI: 10.1021/acsami.8b14045.
|
25 |
ZHAO F P, LIANG J W, YU C, et al. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries[J]. Advanced Energy Materials, 2020, 10(9): 1903422. DOI: 10.1002/aenm.201903422.
|
26 |
OH J, LEE H S, KIM M P, et al. A trade-off-free fluorosulfate-based flame-retardant electrolyte additive for high-energy lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(41): 21933-21940. DOI: 10.1039/D2TA05854E.
|
27 |
温荣严, 高志浩, 门树林, 等. 聚偏氟乙烯基凝胶聚合物电解质的研究进展[J]. 储能科学与技术, 2021, 10(1): 40-49. DOI: 10.19799/j.cnki.2095-4239.2020.0234.
|
|
WEN R Y, GAO Z H, MEN S L, et al. Research progress of polyvinylidene fluoride based gel polymer electrolyte[J]. Energy Storage Science and Technology, 2021, 10(1): 40-49. DOI: 10.19799/j.cnki.2095-4239.2020.0234.
|
28 |
LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J]. Science Advances, 2018, 4(10): eaat5383. DOI: 10.1126/sciadv.aat5383.
|
29 |
ZHANG H M, CHEN J H, LIU J Q, et al. Gel electrolyte with flame retardant polymer stabilizing lithium metal towards lithium-sulfur battery[J]. Energy Storage Materials, 2023, 61: 102885. DOI: 10.1016/j.ensm.2023.102885.
|
30 |
YANG B R, PAN Y, LI T, et al. High-safety lithium metal pouch cells for extreme abuse conditions by implementing flame-retardant perfluorinated gel polymer electrolytes[J]. Energy Storage Materials, 2024, 65: 103124. DOI: 10.1016/j.ensm.2023.103124.
|