1 |
KHAN F M N U, RASUL M G, SAYEM A S M, et al. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review[J]. Journal of Energy Storage, 2023, 71: 108033. DOI:10.1016/j.est. 2023.108033.
|
2 |
ZHANG Z, ZHAO D C, XU Y Y, et al. A review on electrode materials of fast-charging lithium-ion batteries[J]. The Chemical Record, 2022, 22(10): e202200127. DOI:10.1002/tcr.202200127.
|
3 |
WANG R H, CUI W S, CHU F L, et al. Lithium metal anodes: Present and future[J]. Journal of Energy Chemistry, 2020, 48: 145-159. DOI:10.1016/j.jechem.2019.12.024.
|
4 |
LEE D J, SONG D G, CHO S, et al. Lithium metal interface modification for high-energy batteries: Approaches and characterization[J]. Batteries & Supercaps, 2020, 3(9): 828-859. DOI:10.1002/batt.202000016.
|
5 |
CAO W Z, ZHANG J N, LI H. Batteries with high theoretical energy densities[J]. Energy Storage Materials, 2020, 26: 46-55. DOI:10.1016/j.ensm.2019.12.024.
|
6 |
CHENG Y F, CHEN J B, CHEN Y M, et al. Lithium host: Advanced architecture components for lithium metal anode[J]. Energy Storage Materials, 2021, 38: 276-298. DOI:10.1016/j.ensm.2021.03.008.
|
7 |
XU J J, CAI X Y, CAI S M, et al. High-energy lithium-ion batteries: Recent progress and a promising future in applications[J]. Energy & Environmental Materials, 2023, 6(5): e12450. DOI:10.1002/eem2.12450.
|
8 |
XIA S X, YANG C W, JIANG Z Y, et al. Towards practical lithium metal batteries with composite scaffolded lithium metal: An overview[J]. Advanced Composites and Hybrid Materials, 2023, 6(6): 198. DOI:10.1007/s42114-023-00769-3.
|
9 |
GAO M D, LI H, XU L, et al. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges[J]. Journal of Energy Chemistry, 2021, 59: 666-687. DOI:10.1016/j.jechem.2020.11.034.
|
10 |
WANG Q Y, LIU B, SHEN Y H, et al. Confronting the challenges in lithium anodes for lithium metal batteries[J]. Advanced Science, 2021, 8(17): 2101111. DOI:10.1002/advs.202101111.
|
11 |
HUANG Y F, YANG H T, GAO Y, et al. Mechanism and solutions of lithium dendrite growth in lithium metal batteries[J]. Materials Chemistry Frontiers, 2024, 8(5): 1282-1299. DOI:10.1039/D3QM01151H.
|
12 |
QI M P, XIE L L, HAN Q, et al. An overview of the key challenges and strategies for lithium metal anodes[J]. Journal of Energy Storage, 2022, 47: 103641. DOI:10.1016/j.est.2021.103641.
|
13 |
PATHAK R, CHEN K, WU F, et al. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries[J]. Energy Storage Materials, 2021, 41: 448-465. DOI:10.1016/j.ensm.2021.06.015.
|
14 |
LIU Y C, GAO D, XIANG H F, et al. Research progress on copper-based current collector for lithium metal batteries[J]. Energy & Fuels, 2021, 35(16): 12921-12937. DOI:10.1021/acs.energyfuels. 1c02008.
|
15 |
ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321. DOI:10.1016/j.jpowsour.2020.229321.
|
16 |
GAO T J, XU D P, YU Z H, et al. A 3D lithium metal anode reinforced by scalable in situ copper oxide nanostick copper mesh[J]. Journal of Alloys and Compounds, 2021, 865: 158908. DOI:10.1016/j.jallcom.2021.158908.
|
17 |
AMINU I S, GEANEY H, IMTIAZ S, et al. A copper silicide nanofoam current collector for directly grown Si nanowire networks and their application as lithium-ion anodes[J]. Advanced Functional Materials, 2020, 30(38): 2003278. DOI:10.1002/adfm.202003278.
|
18 |
LIU H, HE Y X, JIN B, et al. A compact lithiophilic dual metal oxide nanowire array on 3D copper mesh enables dendrite-free long-life lithium metal anodes[J]. Chemical Engineering Journal, 2024, 496: 154072. DOI:10.1016/j.cej.2024.154072.
|
19 |
YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058. DOI:10.1038/ncomms9058.
|
20 |
LI Q, ZHU S P, LU Y Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries[J]. Advanced Functional Materials, 2017, 27(18): 1606422. DOI:10.1002/adfm. 201606422.
|
21 |
ZHOU B X, BONAKDARPOUR A, STOŠEVSKI I, et al. Modification of Cu current collectors for lithium metal batteries–A review[J]. Progress in Materials Science, 2022, 130: 100996. DOI:10.1016/j.pmatsci.2022.100996.
|
22 |
FAN Y C, LIAO J P, LUO D X, et al. In situ formation of a lithiophilic surface on 3D current collectors to regulate lithium nucleation and growth for dendrite-free lithium metal anodes[J]. Chemical Engineering Journal, 2023, 453: 139903. DOI:10.1016/j.cej.2022.139903.
|
23 |
LIN L, ZHENG H F, LUO Q, et al. Regulating lithium nucleation at the electrolyte/electrode interface in lithium metal batteries[J]. Advanced Functional Materials, 2024, 34(24): 2315201. DOI:10.1002/adfm.202315201.
|
24 |
LIU Y, LIN L, SUN Y, et al. Three-dimensional SnCu scaffold with layered porous structure enable dendrite-free anode of lithium metal batteries[J]. Journal of Alloys and Compounds, 2022, 928: 166976. DOI:10.1016/j.jallcom.2022.166976.
|
25 |
LIANG Z, LIN D C, ZHAO J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2862-2867. DOI:10.1073/pnas.1518188113.
|
26 |
SHI Q T, LU C, CAO Y T, et al. Recent developments in current collectors for lithium metal anodes[J]. Materials Chemistry Frontiers, 2023, 7(7): 1298-1311. DOI:10.1039/D3QM00029J.
|
27 |
CHENG X, BAN J J, WANG Q, et al. "Mechanical-electrochemical" coupling structure and the application as a three-dimensional current collector for lithium metal anode[J]. Applied Surface Science, 2021, 563: 150247. DOI:10.1016/j.apsusc.2021.150247.
|
28 |
YANG Z H, RUAN Q L, XIONG Y, et al. Highly stable lithium metal anode constructed by three-dimensional lithiophilic materials[J]. Batteries, 2023, 9(1): 30. DOI:10.3390/batteries 9010030.
|
29 |
ZHANG R, CHEN X, SHEN X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777. DOI:10.1016/j.joule.2018.02.001.
|