储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 2735-2745.doi: 10.19799/j.cnki.2095-4239.2023.0318

• 储能材料与器件 • 上一篇    下一篇

Cu-In/Bi合金中亲锂位点诱导均匀锂成核实现高倍率锂金属电池

李文彪1,2(), 耿海涛2, 高一博2, 高召顺3(), 王宝1,2()   

  1. 1.中国科学院大学化学工程学院,北京 101408
    2.中国科学院过程工程研究所,北京 100190
    3.中国科学院电工研究所,北京 100190
  • 收稿日期:2023-05-06 修回日期:2023-05-09 出版日期:2023-09-05 发布日期:2023-09-16
  • 通讯作者: 高召顺,王宝 E-mail:liwenbiao20@mails.ucas.ac.cn;gaozs@mail.iee.ac.cn;baowang@ipe.ac.cn
  • 作者简介:李文彪(1997—),男,硕士研究生,研究方向为锂金属负极,E-mail:liwenbiao20@mails.ucas.ac.cn
  • 基金资助:
    国家自然科学基金(52172250)

Cu-In/Bi alloys with lithiophilic sites induce uniform lithium nucleation for high-rate lithium-metal batteries

Wenbiao LI1,2(), Haitao GENG2, Yibo GAO2, Zhaoshun GAO3(), Bao WANG1,2()   

  1. 1.School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 101408, China
    2.Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    3.Institute of;Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2023-05-06 Revised:2023-05-09 Online:2023-09-05 Published:2023-09-16
  • Contact: Zhaoshun GAO, Bao WANG E-mail:liwenbiao20@mails.ucas.ac.cn;gaozs@mail.iee.ac.cn;baowang@ipe.ac.cn

摘要:

锂金属因具有高理论比容量和低电化学电位的优势,被认为是锂电池理想的负极材料。然而,锂金属负极受限于枝晶生长和体积膨胀等问题难以实现商业化应用。因此,设计合理的三维骨架对锂金属负极的循环稳定性尤为重要。基于不同金属之间饱和蒸气压的差异和柯肯达尔效应,本工作采用气相脱合金策略制备了含亲锂位点的多孔铜-铟/铋合金骨架,随后通过熔融载锂法制造了预存储锂的复合锂金属负极(3D Cu-InLi-Li和3D Cu-LiBi-Li)用于高倍率锂金属电池。借助X射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱分析仪(EDS)等测试手段表征材料的物相组成和微观形貌,并研究铟合金和铋合金作为亲锂活性位点对锂金属负极的电化学性能影响。实验结果表明,气相脱合金法制备的多孔铜电极具有较低的成核过电位,表现出优异的循环稳定性。搭配磷酸铁锂正极,复合锂金属负极在10 C下循环1000次后的可逆比容量分别为65.7 mAh/g (3D Cu-LiBi-Li)和61.9 mAh/g (3D Cu-InLi-L),明显高于商业锂箔对应的循环性能(55.7 mAh/g),表明铟合金和铋合金提升了锂金属负极的循环稳定性。本工作通过气相脱合金法和熔融载锂法制备锂金属负极的方法具有较高的应用价值。

关键词: 锂金属负极, 三维多孔合金骨架, 气相脱合金, 锂铟合金, 锂铋合金

Abstract:

Lithium metal is an ideal anode material for lithium batteries for its high theoretical specific capacity and low electrochemical potential. However, the commercial application of lithium metal anodes is limited due to problems such as dendrite growth and volume expansion. Therefore, it is particularly important to design a rational three-dimensional framework for the cycling stability of lithium metal anodes.In this work, porous Copper-Indium/Bismuth (Cu-In/Bi) alloy frameworks containing lithiophilic sites were prepared by vapor phase dealloying based on the difference in saturated vapor pressure between various metals and Kirkendall's effect. Then, it was followed by the fabrication of composite lithium metal anodes (3D Cu-InLi-Li and 3D Cu-LiBi-Li) with pre-stored lithium for high-rate lithium-metal batteries by the molten lithium infusion. The samples were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy(EDS), and the effects of indium and bismuth alloys as lithiophilic sites on the electrochemical performance of the lithium metal anode were researched. The experimental results showed that the porous copper electrodes had a low nucleation overpotential and exhibited excellent cycling stability. Paired with the LiFePO4 cathode, after 1000 cycling at 10 ℃, the reversible specific capacities of the composite lithium metal anode were 65.7 mAh/g (3D Cu-LiBi-Li) and 61.9 mAh/g (3D Cu-InLi-Li), respectively, significantly higher than that of the commercial lithium foil (55.7 mAh/g). Cycling tests at 10 ℃ showed that indium and bismuth alloys improved the cycling stability oflithium metal anodes.The present work has high application value in preparing lithium metal anode by vapor phase dealloying and molten lithium infusion.

Key words: lithiummetal anode, 3D porous alloy framework, vapor phasede alloying, Li-In alloy, Li-Bi alloy

中图分类号: