储能科学与技术 ›› 2023, Vol. 12 ›› Issue (8): 2491-2503.doi: 10.19799/j.cnki.2095-4239.2023.0180
韩雨1(), 曹盛玲1, 宁靖1, 王康丽2, 蒋凯2, 周敏2()
收稿日期:
2023-03-30
修回日期:
2023-04-09
出版日期:
2023-08-05
发布日期:
2023-08-23
通讯作者:
周敏
E-mail:hanyu1588@qq.com;minzhou0729@hust.edu.cn
作者简介:
韩雨(1998—),男,硕士,研究方向为聚合物在锂金属电池中的改性应用,E-mail:hanyu1588@qq.com;
基金资助:
Yu HAN1(), Shengling CAO1, Jing NING1, Kangli WANG2, Kai JIANG2, Min ZHOU2()
Received:
2023-03-30
Revised:
2023-04-09
Online:
2023-08-05
Published:
2023-08-23
Contact:
Min ZHOU
E-mail:hanyu1588@qq.com;minzhou0729@hust.edu.cn
摘要:
锂金属负极长期以来一直被认为是储能电池领域的“圣杯”,但负极表面枝晶的生长和锂金属的持续损耗使得锂金属电池无法稳定循环,甚至存在安全隐患,阻碍了其实际应用。为了解决枝晶生长和负极锂的损耗问题,研究人员提出了不同的界面改性方法。其中有机聚合物具有官能团丰富和结构多样的特点,在诱导锂离子均匀沉积和缓解体积效应方面具备优势,在锂金属负极改性中受到研究者青睐。本文分别从集流体改性、隔膜改性以及人工SEI膜构建的角度,介绍了聚合物应用于锂离子电池界面修饰的研究现状、发展趋势以及关键科学问题;分析了用于界面修饰聚合物的结构设计准则,探讨了聚合物的界面修饰方法,阐明了聚合物界面抑制枝晶生长、缓解体积效应的机制,最后对金属锂负极未来的研究方向和发展趋势进行了展望。
中图分类号:
韩雨, 曹盛玲, 宁靖, 王康丽, 蒋凯, 周敏. 聚合物改性锂金属电池界面策略研究综述[J]. 储能科学与技术, 2023, 12(8): 2491-2503.
Yu HAN, Shengling CAO, Jing NING, Kangli WANG, Kai JIANG, Min ZHOU. Strategies for interfacial modification in lithium metal batteries with polymers[J]. Energy Storage Science and Technology, 2023, 12(8): 2491-2503.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
3 | SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278. |
4 | 姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 192-202. |
YAO S Y, ZENG L Y, LIU J. Research progress in structure design and interface enhancement of lithium anode for high-performance lithium metal batteries[J]. Materials Reports, 2022, 36(16): 192-202. | |
5 | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29. |
6 | GAO M D, LI H, XU L, et al. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges[J]. Journal of Energy Chemistry, 2021, 59: 666-687. |
7 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
8 | QIN K Q, HOLGUIN K, MOHAMMADIROUDBARI M, et al. Strategies in structure and electrolyte design for high-performance lithium metal batteries[J]. Advanced Functional Materials, 2021, 31(15): doi: 10.1002/adfm.202009694. |
9 | PELED E, MENKIN S. Review—SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): doi: 10.1149/2.1441707jes. |
10 | SHI Y, LIU G X, WAN J, et al. In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: Revealing interfacial degradation in lithium metal batteries[J]. Science China Chemistry, 2021, 64(5): 734-738. |
11 | LOPEZ J, PEI A, OH J Y, et al. Effects of polymer coatings on electrodeposited lithium metal[J]. Journal of the American Chemical Society, 2018, 140(37): 11735-11744. |
12 | SHEN X, ZHANG R, CHEN X A, et al. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020, 10(10): doi: 10.1002/aenm.201903645. |
13 | HE Y, XU H W, SHI J L, et al. Polydopamine coating layer modified current collector for dendrite-free Li metal anode[J]. Energy Storage Materials, 2019, 23: 418-426. |
14 | LIU W, LIU P C, MITLIN D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Advanced Energy Materials, 2020, 10(43): doi: 10.1002/aenm.202002297. |
15 | LIANG Z, ZHENG G Y, LIU C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916. |
16 | STARK J K, DING Y, KOHL P A. Nucleation of electrodeposited lithium metal: Dendritic growth and the effect of co-deposited sodium[J]. Journal of the Electrochemical Society, 2013, 160(9): doi: 10.1149/2.028309jes. |
17 | COHEN Y S, COHEN Y, AURBACH D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy[J]. The Journal of Physical Chemistry B, 2000, 104(51): 12282-12291. |
18 | CHAZALVIEL J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367. |
19 | ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochimica Acta, 2006, 51(25): 5334-5340. |
20 | DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456. |
21 | TU Z Y, NATH P, LU Y Y, et al. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries[J]. Accounts of Chemical Research, 2015, 48(11): 2947-2956. |
22 | JIE Y L, REN X D, CAO R G, et al. Advanced liquid electrolytes for rechargeable Li metal batteries[J]. Advanced Functional Materials, 2020, 30(25): doi: 10.1002/adfm.201910777. |
23 | 冯建文, 胡时光, 韩兵, 等. 锂金属电池电解液组分调控的研究进展[J]. 储能科学与技术, 2020, 9(6): 1629-1640. |
FENG J W, HU S G, HAN B, et al. Research progress of electrolyte optimization for lithium metal batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1629-1640. | |
24 | JEONG H, JANG J, JO C. A review on current collector coating methods for next-generation batteries[J]. Chemical Engineering Journal, 2022, 446: doi: 10.1016/j.cej.2022.136860. |
25 | ZHOU B X, BONAKDARPOUR A, STOŠEVSKI I, et al. Modification of Cu current collectors for lithium metal batteries-A review[J]. Progress in Materials Science, 2022, 130: doi: 10.1016/j.pmatsci.2022.100996. |
26 | SU L S, MANTHIRAM A. Lithium-metal batteries via suppressing Li dendrite growth and improving coulombic efficiency[J]. Small Structures, 2022, 3(10): doi: 10.1002/sstr.202200114. |
27 | SHAO A H, TANG X Y, ZHANG M, et al. Challenges, strategies, and prospects of the anode-free lithium metal batteries[J]. Advanced Energy and Sustainability Research, 2022, 3(4): doi: 10.1002/aesr.202100197. |
28 | QI M P, XIE L L, HAN Q, et al. An overview of the key challenges and strategies for lithium metal anodes[J]. Journal of Energy Storage, 2022, 47: doi: 10.1016/j.est.2021.103641. |
29 | ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2018, 3(1): 16-21. |
30 | MA L B, CUI J, YAO S S, et al. Dendrite-free lithium metal and sodium metal batteries[J]. Energy Storage Materials, 2020, 27: 522-554. |
31 | ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: doi: 10.1016/j.jpowsour.2020.229321. |
32 | XU H Y, LI Q A, PAN H Y, et al. Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal[J]. Chinese Physics B, 2019, 28(7): doi: 10.1088/1674-1056/28/7/078202. |
33 | LANG J L, SONG J N, QI L H, et al. Uniform lithium deposition induced by polyacrylonitrile submicron fiber array for stable lithium metal anode[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10360-10365. |
34 | LI N, YE Q A, ZHANG K, et al. Normalized lithium growth from the nucleation stage for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2019, 58(50): 18246-18251. |
35 | LIU T C, GE J X, XU Y, et al. Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode[J]. Energy Storage Materials, 2020, 32: 261-271. |
36 | HAO Z D, ZHAO Q, TANG J D, et al. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries[J]. Materials Horizons, 2021, 8(1): 12-32. |
37 | ZHANG Z Y, LAI Y Q, ZHANG Z A, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014, 129: 55-61. |
38 | PAN R J, SUN R, WANG Z H, et al. Double-sided conductive separators for lithium-metal batteries[J]. Energy Storage Materials, 2019, 21: 464-473. |
39 | HAN D H, ZHANG M, LU P X, et al. A multifunctional separator with Mg(OH)2 nanoflake coatings for safe lithium-metal batteries[J]. Journal of Energy Chemistry, 2021, 52: 75-83. |
40 | LIU K, BAI P, BAZANT M Z, et al. A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA/cm2 observed in situ in a capillary cell[J]. Journal of Materials Chemistry A, 2017, 5(9): 4300-4307. |
41 | WANG W, LIAO C, LIEW K M, et al. A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(12): 6859-6868. |
42 | RYOU M H, LEE D J, LEE J N, et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators[J]. Advanced Energy Materials, 2012, 2(6): 645-650. |
43 | YAO W, XU M, QIU W J, et al. Ultralight PEDOT functionalized separators toward high-performance lithium metal anodes[J]. ChemElectroChem, 2021, 8(15): 2836-2845. |
44 | WANG Z H, PAN R J, XU C, et al. Conducting polymer paper-derived separators for lithium metal batteries[J]. Energy Storage Materials, 2018, 13: 283-292. |
45 | FU X L, SHANG C Q, YANG M Y, et al. An ion-conductive separator for high safety Li metal batteries[J]. Journal of Power Sources, 2020, 475: doi: 10.1016/j.jpowsour.2020.228687. |
46 | LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angewandte Chemie (International Ed in English), 2018, 57(6): 1505-1509. |
47 | LI S M, HUANG J L, CUI Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes[J]. Nature Nanotechnology, 2022, 17(6): 613-621. |
48 | DONG Q Y, HONG B, FAN H L, et al. A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode[J]. Energy Storage Materials, 2022, 45: 1220-1228. |
49 | GUAN M R, HUANG Y X, MENG Q Q, et al. Stabilization of lithium metal interfaces by constructing composite artificial solid electrolyte interface with mesoporous TiO2 and perfluoropolymers[J]. Small, 2022, 18(40): doi: 10.1002/smll.202202981. |
[1] | 刘欢, 彭娜, 高清雯, 李文鹏, 杨志荣, 王景涛. 冠醚掺杂的聚合物固态电解质对全固态锂电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2401-2411. |
[2] | 李凌萱, 王子轩, 赵辰孜, 张睿, 卢洋, 黄佳琦, 陈爱兵, 张强. 复合金属锂负极的定量模型新进展[J]. 储能科学与技术, 2023, 12(7): 2059-2078. |
[3] | 黄凌锋, 韩东梅, 黄盛, 王拴紧, 肖敏, 孟跃中. 含有机硼的锂离子电池聚合物电解质的研究进展[J]. 储能科学与技术, 2023, 12(6): 1815-1830. |
[4] | 沈馨, 张睿, 赵辰孜, 武鹏, 张羽彤, 张俊东, 范丽珍, 刘全兵, 陈爱兵, 张强. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. |
[5] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[6] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[7] | 石鹏, 翟喜民, 杨贺捷, 赵辰孜, 闫崇, 别晓非, 姜涛, 张强. 实用化复合锂负极研究进展[J]. 储能科学与技术, 2022, 11(6): 1725-1738. |
[8] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[9] | 王星星, 宋子钰, 吴浩, 冯文芳, 周志彬, 张恒. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4): 1226-1235. |
[10] | 方亮, 张凯, 周丽敏. 铝离子电池电解液的研究进展[J]. 储能科学与技术, 2022, 11(4): 1236-1245. |
[11] | 乔东格, 刘训良, 温治, 豆瑞峰, 周文宁. 升温和脉冲充电对锂枝晶生长抑制作用的数值分析[J]. 储能科学与技术, 2022, 11(3): 1008-1018. |
[12] | 甘露雨, 陈汝颂, 潘弘毅, 吴思远, 禹习谦, 李泓. 锂电池安全性多尺度研究策略:实验与模拟方法[J]. 储能科学与技术, 2022, 11(3): 852-865. |
[13] | 齐宇博, 高达, 郑贤铃. 我国SPE制氢技术产业化经济性分析[J]. 储能科学与技术, 2022, 11(12): 4038-4047. |
[14] | 张秀波, 于畅, 余金河, 刘迎宾, 谢远洋, 王健健, 兰淑琴, 邱介山. 极端环境下超级电容器聚合物电解质的研究进展[J]. 储能科学与技术, 2022, 11(12): 3808-3818. |
[15] | 李素丽, 伍鹏, 肖益蓉, 于佩雯, 潘跃德, 杨文. 甲氧基聚乙二醇丙烯酸酯在全固态电池中的应用[J]. 储能科学与技术, 2022, 11(12): 3768-3775. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||