1 |
CHEN L Q. Forty years of solid state lithium batteries—Review and prospect[J]. Energy storage science and technology, 2016(5):605-606.
|
2 |
ZHOU L, TUFAIL M K, LIAO Y Z, et al. Tailored carrier transport path by interpenetrating networks in cathode composite for high performance all-solid-state Li-SeS2 batteries[J]. Advanced Fiber Materials, 2022, 4(3): 487-502.
|
3 |
YANG L, ZENG J F, ZHOU L, et al. Orderly defective superstructure for enhanced pseudocapacitive storage in titanium niobium oxide[J]. Nano Research, 2022, 15(2): 1570-1578.
|
4 |
GONG Y X, WANG J J. Solid-state batteries: From fundamental interface characterization to realize sustainable promise[J]. Rare Metals, 2020, 39(7): 743-744.
|
5 |
HUANG W Z, ZHAO C Z, WU P, et al. Anode-free solid-state lithium batteries: A review[J]. Advanced Energy Materials, 2022, 12(26): doi: 10.1002/aenm.202201044.
|
6 |
ZENG Z Q, JIANG X Y, LI R, et al. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte[J]. Advanced Science, 2016, 3(9): doi: 10.1002/advs.201600066.
|
7 |
许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(4): 331-341.
|
|
XU X X, QIU Z J, GUAN Y B, et al. Research status and prospect of all solid state lithium battery technology [J]. Energy Storage Science and Technology, 2013, 2(4): 331-340.
|
8 |
李泓. 全固态锂电池:梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193.
|
|
LI H. All solid state lithium battery: Dream into reality [J]. Energy Storage Science and Technology, 2018, 7(2):188-193.
|
9 |
LI L S, DENG Y F, DUAN H H, et al. LiF and LiNO3 as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability[J]. Journal of Energy Chemistry, 2022, 65: 319-328.
|
10 |
ZHAO C Z, ZHAO Q, LIU X, et al. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode[J]. Advanced Materials, 2020, 32(12): doi: 10.1002/adma.201905629.
|
11 |
MINDEMARK J, LACEY M J, BOWDEN T, et al. Beyond PEO-alternative host materials for Li+-Conducting solid polymer electrolytes[J]. Progress in Polymer Science, 2018, 81:114-143.
|
12 |
ZHAO Z M, WANG J Z, LV Z L, et al. In-situ formed all-amorphous poly(ethylene oxide)-based electrolytes enabling solid-state Zn electrochemistry[J]. Chemical Engineering Journal, 2021, 417: doi: 10.1016/j.cej.2020.128096.
|
13 |
YANG Y Q, WILLIAMS J A, PANDEY G P, et al. Poly(propylene carbonate) interpenetrating cross-linked poly(ethylene glycol) based polymer electrolyte for solid-state lithium batteries[J]. ECS Transactions, 2018, 85(13):53-59.
|
14 |
JI P Y, FANG J, ZHANG Y Y, et al. Novel single lithium-ion conducting polymer electrolyte based on poly(hexafluorobutyl methacrylate-co-lithium allyl sulfonate) for lithium-ion batteries[J]. ChemElectroChem, 2017, 4(9):2352-2358.
|
15 |
LIN D C, YUEN P Y, LIU Y Y, et al. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus[J]. Advanced Materials, 2018, 30(32): doi: 10.1002/adma.201802661.
|
16 |
LI C, GUO Z Y, YANG B C, et al. A rechargeable Li-CO2 battery with a gel polymer electrolyte[J]. Angewandte Chemie International Edition, 2017, 56(31): 9126-9130.
|
17 |
TOMINAGA Y, YAMAZAKI K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chemical Communications, 2014, 50(34): 4448-4450.
|
18 |
ZUO C, YANG M L, WANG Z J, et al. Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy-amine reaction for high-performance all-solid-state lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(32):18871-18879.
|
19 |
CHEN Z, KIM G T, WANG Z L, et al. 4-V flexible all-solid-state lithium polymer batteries[J]. Nano Energy, 2019, 64: doi: 10.1016/j.nanoen.2019.103986.
|
20 |
WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1):doi: 10.1002/adfm.201805301
|
21 |
LI S Q, JIANG K, WANG J R, et al. Molecular brush with dense PEG side chains: Design of a well-defined polymer electrolyte for lithium-ion batteries[J]. Macromolecules, 2019, 52(19):7234-7243.
|
22 |
CHAI J C, LIU Z H, MA J, et al. In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2016, 4(2): doi:10.1002/advs.201600377.
|
23 |
YAN Y Y, JU J W, DONG S M, et al. In situ polymerization permeated three-dimensional Li+-ercolated porous oxide ceramic framework boosting all solid-state lithium metal battery[J]. Advanced Science, 2021, 8(9): doi: 10.1002/advs.202003887.
|
24 |
PENG Z F, TANG W J, PENG Y J, et al. Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 by expanded graphite[J]. Energy Technology, 2019, 7(11): doi: 10.1002/ente.201900614.
|
25 |
PAN Q W, BARBASH D, SMITH D M, et al. Correlating electrode-electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries[J]. Advanced Energy Materials, 2017, 7(22): doi: 10.1002/aenm.201701231.
|