储能科学与技术 ›› 2022, Vol. 11 ›› Issue (12): 3759-3767.doi: 10.19799/j.cnki.2095-4239.2022.0420
姚健1,2(), 刘朝阳1,2, 王海1,2, 王佳东2, 高宣雯1(), 李建中1, 刘朝孟1, 翟玉春1, 骆文彬1
收稿日期:
2022-07-27
修回日期:
2022-08-08
出版日期:
2022-12-05
发布日期:
2022-12-29
通讯作者:
高宣雯
E-mail:2071640@stu.neu.edu.cn;gaoxuanwen@mail.neu.edu.cn
作者简介:
姚健(1998—),男,硕士研究生,研究方向为锂离子电池回收再利用,E-mail:2071640@stu.neu.edu.cn;
基金资助:
Jian YAO1,2(), Zhaoyang LIU1,2, Hai WANG1,2, Jiadong WANG2, Xuanwen GAO1(), Jianzhong LI1, Zhaomeng LIU1, Yuchun ZHAI1, Wenbin LUO1
Received:
2022-07-27
Revised:
2022-08-08
Online:
2022-12-05
Published:
2022-12-29
Contact:
Xuanwen GAO
E-mail:2071640@stu.neu.edu.cn;gaoxuanwen@mail.neu.edu.cn
摘要:
为模拟实际工业生产中废旧LiFePO4电池回收及其综合应用,本文设计了在酸性条件下对废旧LiFePO4电池正负混合极片中有价金属Li、Cu、Fe的选择性浸出及其产物回收再利用。电池拆解后,将正负混合极片机械粉碎后过筛,得到Cu、Al高含量杂质的正负极混合粉,700 ℃高温焙烧后,除碳率和除氟率分别为99.03%和99.93%,后对其进行Li、Cu的选择性浸出实验。研究结果表明,浸Li段在H+/Li+的物质的量之比为0.7、浸出温度90 ℃、浸出时间3 h、液固比为3∶1时,金属元素Li、Fe、Cu、Al的浸出率分别为:91.88 %、0.0024%、4.71%、0.11%,实现对Li的有效分离。对浸出液引入饱和Na2CO3作为沉淀剂后,成功回收合成电池级碳酸锂。另一方面,对浸出渣进行450 ℃焙烧后,滴加浓硫酸控制pH为1.5、浸出温度90 ℃、浸出时间3 h、液固比5∶1,金属元素Fe、Cu浸出率为:0.11%和92.54%,实现了有价金属Cu的选择性浸出。将处理后的浸铜渣进行酸溶,滴加氨水调节pH至1.8,形成二水磷酸铁,沉淀率可达到95%。焙烧除去二水磷酸铁中的结晶水,得到电池级磷酸铁,纯度为99.48%。
中图分类号:
姚健, 刘朝阳, 王海, 王佳东, 高宣雯, 李建中, 刘朝孟, 翟玉春, 骆文彬. 正负极混合宏量回收废旧磷酸铁锂电池的探索[J]. 储能科学与技术, 2022, 11(12): 3759-3767.
Jian YAO, Zhaoyang LIU, Hai WANG, Jiadong WANG, Xuanwen GAO, Jianzhong LI, Zhaomeng LIU, Yuchun ZHAI, Wenbin LUO. Exploration of mixed positive and negative electrodes of spent lithium iron phosphate batteries[J]. Energy Storage Science and Technology, 2022, 11(12): 3759-3767.
1 | WHITTINGHAM M S. Lithium titanium disulfide cathodes[J]. Nature Energy, 2021, 6(2): 214. |
2 | GUO Y, LI F, ZHU H C, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Management, 2016, 51: 227-233. |
3 | GEORGI-MASCHLER T, FRIEDRICH B, WEYHE R, et al. Development of a recycling process for Li-ion batteries[J]. Journal of Power Sources, 2012, 207: 173-182. |
4 | HE L P, SUN S Y, MU Y Y, et al. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 714-721. |
5 | 蒋梦迪, 张继予, 谢宏泽, 等. 酸浸法回收废锂电池中有价金属钴的研究进展[J]. 化工技术与开发, 2021, 50(3): 60-65. |
JIANG M D, ZHANG J Y, XIE H Z, et al. Research progress on recovery of valuable metal cobalt from waste lithium batteries by acid leaching[J]. Technology & Development of Chemical Industry, 2021, 50(3): 60-65. | |
6 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
7 | CHAGNES A, POSPIECH B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(7): 1191-1199. |
8 | YANG J, JIANG L X, LIU F Y, et al. Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(8): 2256-2264. |
9 | 李之钦, 庄绪宁, 宋小龙, 等. 废锂离子电池正极材料的火法资源化技术研究进展[J]. 环境工程, 2021, 39(4): 115-122, 146. |
LI Z Q, ZHUANG X N, SONG X L, et al. Research progress on recovery of cathode material from spent lithium-ion batteries by pyrometallurgy[J]. Environmental Engineering, 2021, 39(4): 115-122, 146. | |
10 | 谭义勇. 浅析磷酸铁锂电池[J]. 信息记录材料, 2019, 20(6): 50-51. |
TAN Y Y. Analysis of lithium iron phosphate battery [J]. Information Recording Materials, 2019, 20(6): 50-51. | |
11 | 杨健, 秦吉涛, 李芳成, 等. 废旧锂离子电池的湿法回收研究进展[J]. 中南大学学报(自然科学版), 2020, 51(12): 3261-3278. |
YANG J, QIN J T, LI F C, et al. Review of hydrometallurgical processes for recycling spent lithium-ion batteries[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3261-3278. | |
12 | 杨健, 周媛, 张宗良, 等. 电场对废旧锂离子电池中有价金属浸出的影响研究(英文)[J/OL]. Transactions of Nonferrous Metals Society of China, 2022-05-29[2022-07-01]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZYSY20220512001&uniplatform=NZKPT&v=uMFR2gB616vVdmxt1SQGdmpzVkn7zJVIMF6hOW1ux5RrwRvhaZoyxal06btJpG5. |
YANG J, ZHOU Y, ZHANG Z L, et al. Effect of electric field on leaching of valuable metals from spent lithium-ion batteries (English)[J/OL]. Transactions of Nonferrous Metals Society of China, 2022-05-29[2022-07-01]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZYSY20220512001&uniplatform=NZKPT&v=uMFR2gB616vVdmxt1SQGdmpzVkn7zJVIMF6hOW1ux5RrwRvhaZoyxal06btJpG5. | |
13 | MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. |
14 | 赖延清, 杨健, 张刚, 等. 废旧三元锂离子电池正极材料的淀粉还原浸出工艺及其动力学[J]. 中国有色金属学报, 2019, 29(1): 153-160. |
LAI Y Q, YANG J, ZHANG G, et al. Optimization and kinetics of leaching valuable metals from cathode materials of spent ternary lithium ion batteries with starch as reducing agent[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(1): 153-160. | |
15 | CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. |
16 | LI X L, ZHANG J, SONG D W, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345: 78-84. |
17 | SONG X, HU T, LIANG C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC Advances, 2017, 7(8): 4783-4790. |
18 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. |
19 | CHEN M Y, MA X T, CHEN B, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J]. Joule, 2019, 3(11): 2622-2646. |
20 | ZHENG R J, ZHAO L, WANG W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. |
21 | LI H, XING S Z, LIU Y, et al. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017-8024. |
22 | YANG Y X, MENG X Q, CAO H B, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133. |
23 | KUMAR J, SHEN X, LI B, et al. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4[J]. Waste Management, 2020, 113: 32-40. |
24 | ZHANG J L, HU J T, LIU Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631. |
25 | 谢勇, 钟贵明, 龚正良, 等. Li3Fe2(PO4)3/C正极材料的电化学性能及其反应机理研究[J]. 电化学, 2015, 21(2): 123-129. |
XIE Y, ZHONG G M, GONG Z L, et al. Electrochemical performance and reaction mechanism of Li3Fe2(PO4)3/C cathode material[J]. Journal of Electrochemistry, 2015, 21(2): 123-129. | |
26 | 兰玮锋. 氧化铜矿硫酸搅拌浸出试验研究[J]. 中国资源综合利用, 2018, 36(4): 3-4, 8. |
LAN W F. Study on stirring and leaching of sulfuric acid in copper oxide[J]. China Resources Comprehensive Utilization, 2018, 36(4): 3-4, 8. | |
27 | YAN T T, ZHONG S W, ZHOU M M, et al. High-efficiency method for recycling lithium from spent LiFePO4 cathode[J]. Nanotechnology Reviews, 2020, 9: 1586-1593. |
28 | JHA M K, KUMARI A, JHA A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone[J]. Waste Management, 2013, 33(9): 1890-1897. |
29 | 宋昌斌, 李润超. 碳酸锂在水中的溶解度和超溶解度的测定及热力学分析[J]. 化工进展, 2016, 35(8): 2350-2354. |
SONG C B, LI R C. Measurement and thermodynamic analysis of the solubility and supersolubility of lithium carbonate in water[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2350-2354. |
[1] | 肖浩逸, 何晓霞, 梁佳佳, 李春丽. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, 11(12): 3999-4009. |
[2] | 李旭东, 张向文. 基于主成分分析与WOA-Elman的锂离子电池SOH估计[J]. 储能科学与技术, 2022, 11(12): 4010-4021. |
[3] | 王洋, 张宇新, 卢旭, 刘龙. 基于锂离子嵌入模型的NCM811电池性能[J]. 储能科学与技术, 2022, 11(12): 3748-3758. |
[4] | 丁凯, 钱一民, 陈乔, 郑剑, 王易. 锂离子电池储能系统多时间尺度均衡方法[J]. 储能科学与技术, 2022, 11(12): 3872-3882. |
[5] | 周俊飞, 蔡星鹏, 丁浩, 崔孝玲. 阴离子氧化还原反应对富锂锰基正极材料的影响及其改性策略[J]. 储能科学与技术, 2022, 11(12): 3733-3740. |
[6] | 张凯博, 贾凯丽, 徐晓明, 曾涛, 薛有宝, 万柳, 赵宗良. 涂炭铝箔对高能量密度LiFePO4 动力电池的影响[J]. 储能科学与技术, 2022, 11(12): 3741-3747. |
[7] | 高清雯, 杨智昊, 李文鹏, 武文佳, 王景涛. 钴掺杂二氧化铈基层状复合固态电解质的制备及其性能[J]. 储能科学与技术, 2022, 11(12): 3776-3786. |
[8] | 许卓, 李希超, 贾隆舟, 陈兵, 戴作强, 郑莉莉. 过充循环对锂离子电池容量衰减及安全性影响[J]. 储能科学与技术, 2022, 11(12): 3978-3986. |
[9] | 张林森, 王士奇, 王利霞, 宋延华. PEO基Li+-g-C3N4 复合固态电解质的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3463-3469. |
[10] | 陈杰, 陈伟伦, 张旭, 周晏玮, 张五星. 钠离子电池预钠化技术研究进展[J]. 储能科学与技术, 2022, 11(11): 3487-3496. |
[11] | 李晓涵, 孙磊, 马勇, 郭东亮, 肖鹏, 刘建军, 吴鹏, 张志行, 韩雪冰. 基于Sage-Husa EKF算法的锂离子电池能量状态估计[J]. 储能科学与技术, 2022, 11(11): 3603-3612. |
[12] | 刘飞, 赵培文, 赵经香, 孙贤伟, 李苗苗, 王敬豪, 尹延鑫, 戴作强, 郑莉莉. 钠离子电池硬碳负极材料研究进展[J]. 储能科学与技术, 2022, 11(11): 3497-3509. |
[13] | 李放, 闵永军, 王琛, 张涌. 基于充电过程的锂电池SOH估计和RUL预测[J]. 储能科学与技术, 2022, 11(10): 3316-3327. |
[14] | 李夔宁, 王靖鸿, 谢翌, 刘彬, 刘江岩, 刘召婷. 锂离子电池低温复合加热策略及优化[J]. 储能科学与技术, 2022, 11(10): 3191-3199. |
[15] | 丁凯, 郑剑, 李伟, 黄曾睿, 王易, 钱一民, 郑子萱, 谢琦. 基于用户侧储能的电压暂降分级治理方案及其经济性分析[J]. 储能科学与技术, 2022, 11(10): 3381-3390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||