储能科学与技术 ›› 2022, Vol. 11 ›› Issue (12): 4010-4021.doi: 10.19799/j.cnki.2095-4239.2022.0384
收稿日期:
2022-07-08
修回日期:
2022-07-15
出版日期:
2022-12-05
发布日期:
2022-12-29
通讯作者:
张向文
E-mail:20082305098@mails.guet.edu.cn;zxw@guet.edu.cn
作者简介:
李旭东(1995—),男,硕士研究生,主要研究方向为锂离子电池建模与健康状态估计,E-mail:20082305098@mails.guet.edu.cn;
基金资助:
Received:
2022-07-08
Revised:
2022-07-15
Online:
2022-12-05
Published:
2022-12-29
Contact:
Xiangwen ZHANG
E-mail:20082305098@mails.guet.edu.cn;zxw@guet.edu.cn
摘要:
准确估计锂离子电池健康状态(state of health,SOH)是保证电动汽车高效安全持久运行的关键。利用数据驱动方法可以提高SOH估计的精度,然而该方法的SOH估计精度高度依赖于所选择的特征与估计模型。特征之间的冗余性和估计模型泛化性不足都将影响电池SOH的准确估计。为了减小数据驱动特征之间的冗余度,增加模型的泛化性并提升SOH估计精度,提出了一种基于主成分分析与鲸鱼优化算法(whale optimization algorithm,WOA)-Elman的SOH估计方法。首先,从充电曲线中提取并选择与锂离子电池老化高度相关的特征,利用主成分分析方法进行特征降维,减小特征之间的冗余度,然后,采用WOA方法优化Elman模型的初始权值与初始阈值,建立WOA-Elman模型,以B01号电池测试数据训练模型,利用B02与B03号电池进行验证,同时,对比常用的长短期记忆神经网络、支持向量回归和极限学习机以及未优化的Elman模型,结果显示,WOA-Elman估计模型的均方根误差为1.2113%。最后,分别采用3组电池实验测试数据交替作为训练集,对其余两组电池的SOH进行估计验证,估计结果的均方根偏差最大仅为0.1771%。因此,本工作的方法可以更准确地估计电池SOH,并且具有更好的泛化性能。
中图分类号:
李旭东, 张向文. 基于主成分分析与WOA-Elman的锂离子电池SOH估计[J]. 储能科学与技术, 2022, 11(12): 4010-4021.
Xudong LI, Xiangwen ZHANG. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model[J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021.
1 | TANG X P, LIU K L, WANG X, et al. Model migration neural network for predicting battery aging trajectories[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 363-374. |
2 | XIONG R, LI L L, TIAN J P. Towards a smarter battery management system: A critical review on battery state of health monitoring methods[J]. Journal of Power Sources, 2018, 405: 18-29. |
3 | 梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. |
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. | |
4 | 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111, 325. |
ZHOU D, SONG X H, LU W B, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111, 325. | |
5 | BIAN X L, WEI Z B, LI W H, et al. State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2226-2236. |
6 | LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190. |
7 | HU X S, CHE Y H, LIN X K, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 382-398. |
8 | LI W H, SENGUPTA N, DECHENT P, et al. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J]. Journal of Power Sources, 2021, 482: doi: 10.1016/j.jpowsour.2020.228863. |
9 | WEI J W, DONG G Z, CHEN Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643. |
10 | PAN H H, LÜ Z Q, WANG H M, et al. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine[J]. Energy, 2018, 160: 466-477. |
11 | 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119. |
LI C R, XIAO F, FAN Y X, et al. An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119. | |
12 | 徐超, 李立伟, 杨玉新, 等. 基于改进粒子滤波的锂电池SOH预测[J]. 储能科学与技术, 2020, 9(6): 1954-1960. |
XU C, LI L W, YANG Y X, et al. Lithium-ion battery SOH estimation based on improved particle filter[J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960. | |
13 | 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968-3978. |
GUO Y F, HUANG K, LI Z G. Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968-3978. | |
14 | YANG D, ZHANG X, PAN R, et al. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 384: 387-395. |
15 | LI Y Y, STROE D I, CHENG Y H, et al. On the feature selection for battery state of health estimation based on charging-discharging profiles[J]. Journal of Energy Storage, 2021, 33: doi: 10.1016/j.est.2020.102122. |
16 | 戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649. |
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. | |
17 | 陈翌, 白云飞, 何瑛. 数据驱动的锂电池健康状态估算方法比较[J]. 储能科学与技术, 2019, 8(6): 1204-1210. |
CHEN Y, BAI Y F, HE Y. Comparison of data-driven lithium battery state of health estimation methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1204-1210. | |
18 | 李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384. |
LI L B, LI S J, LI J, et al. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. | |
19 | LI X Y, ZHANG L, WANG Z P, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. Journal of Energy Storage, 2019, 21: 510-518. |
20 | 胡兵, 詹仲强, 陈洁, 等. 基于PCA-GA-Elman的短期光伏出力预测研究[J]. 太阳能学报, 2020, 41(6): 256-263. |
HU B, ZHAN Z Q, CHEN J, et al. Prediction research on short-term photovoltaic output based on PCA-GA-Elman[J]. Acta Energiae Solaris Sinica, 2020, 41(6): 256-263. | |
21 | GUO P Y, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450. |
22 | MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
23 | 潘海鸿, 吕治强, 付兵, 等. 采用极限学习机实现锂离子电池健康状态在线估算[J]. 汽车工程, 2017, 39(12): 1375-1381, 1396. |
PAN H H, LÜ Z Q, FU B, et al. Online estimation of lithium-ion battery's state of health using extreme learning machine[J]. Automotive Engineering, 2017, 39(12): 1375-1381, 1396. | |
24 | 石伟杰, 王海民. 基于锂离子电池热特性的SOH在线诊断模型研究[J]. 仪器仪表学报, 2020, 41(8): 206-216. |
SHI W J, WANG H M. On-line diagnosis model of SOH based on thermal characteristics of lithium-ion battery[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 206-216. | |
25 | 徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704. |
XU J N, NI Y L, ZHU C B. Remaining useful life prediction for lithium-ion batteries based on improved support vector regression[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704. | |
26 | 王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333. |
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. |
[1] | 邓林旺, 冯天宇, 舒时伟, 张子峰, 郭彬. 锂离子电池快充策略技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2879-2890. |
[2] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[3] | 牛少军, 吴凯, 朱国斌, 王艳, 曲群婷, 郑洪河. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9): 2989-2994. |
[4] | 陈晓宇, 耿萌萌, 王乾坤, 沈佳妮, 贺益君, 马紫峰. 基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2022, 11(9): 2995-3002. |
[5] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[6] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
[7] | 曹志成, 周开运, 朱家立, 刘高明, 严慜, 汤舜, 曹元成, 程时杰, 张炜鑫. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8): 2664-2670. |
[8] | 卓萍, 朱艳丽, 齐创, 王聪杰, 高飞. 锂离子电池组过充燃烧爆炸特性[J]. 储能科学与技术, 2022, 11(8): 2471-2479. |
[9] | 马勇, 李晓涵, 孙磊, 郭东亮, 杨景刚, 刘建军, 肖鹏, 钱广俊. 基于三维电化学热耦合析锂模型的锂离子电池参数设计[J]. 储能科学与技术, 2022, 11(8): 2600-2611. |
[10] | 唐亮, 尹小波, 吴候福, 刘鹏杰, 王青松. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652. |
[11] | 霍丽萍, 栾伟玲, 庄子贤. 锂离子电池储能安全技术的发展态势[J]. 储能科学与技术, 2022, 11(8): 2671-2680. |
[12] | 张越, 孔得朋, 平平. 液冷板抑制锂离子电池组热失控蔓延性能及优化设计[J]. 储能科学与技术, 2022, 11(8): 2432-2441. |
[13] | 徐成善, 鲁博瑞, 张梦启, 王淮斌, 金昌勇, 欧阳明高, 冯旭宁. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术, 2022, 11(8): 2418-2431. |
[14] | 韦荣阳, 毛阗, 高晗, 彭建仁, 杨健. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599. |
[15] | 喻航, 张英, 徐超航, 余思瀚. 锂电储能系统热失控防控技术研究进展[J]. 储能科学与技术, 2022, 11(8): 2653-2663. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||