储能科学与技术 ›› 2022, Vol. 11 ›› Issue (12): 4010-4021.doi: 10.19799/j.cnki.2095-4239.2022.0384

• 储能测试与评价 • 上一篇    下一篇

基于主成分分析与WOA-Elman的锂离子电池SOH估计

李旭东(), 张向文()   

  1. 桂林电子科技大学电子工程与自动化学院,广西 桂林 541004
  • 收稿日期:2022-07-08 修回日期:2022-07-15 出版日期:2022-12-05 发布日期:2022-12-29
  • 通讯作者: 张向文 E-mail:20082305098@mails.guet.edu.cn;zxw@guet.edu.cn
  • 作者简介:李旭东(1995—),男,硕士研究生,主要研究方向为锂离子电池建模与健康状态估计,E-mail:20082305098@mails.guet.edu.cn
  • 基金资助:
    国家自然科学基金(62263006);广西自然科学基金(2018GXNSFAA281282);桂林电子科技大学研究生教育创新计划资助项目(2021YCXS120)

State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model

Xudong LI(), Xiangwen ZHANG()   

  1. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • Received:2022-07-08 Revised:2022-07-15 Online:2022-12-05 Published:2022-12-29
  • Contact: Xiangwen ZHANG E-mail:20082305098@mails.guet.edu.cn;zxw@guet.edu.cn

摘要:

准确估计锂离子电池健康状态(state of health,SOH)是保证电动汽车高效安全持久运行的关键。利用数据驱动方法可以提高SOH估计的精度,然而该方法的SOH估计精度高度依赖于所选择的特征与估计模型。特征之间的冗余性和估计模型泛化性不足都将影响电池SOH的准确估计。为了减小数据驱动特征之间的冗余度,增加模型的泛化性并提升SOH估计精度,提出了一种基于主成分分析与鲸鱼优化算法(whale optimization algorithm,WOA)-Elman的SOH估计方法。首先,从充电曲线中提取并选择与锂离子电池老化高度相关的特征,利用主成分分析方法进行特征降维,减小特征之间的冗余度,然后,采用WOA方法优化Elman模型的初始权值与初始阈值,建立WOA-Elman模型,以B01号电池测试数据训练模型,利用B02与B03号电池进行验证,同时,对比常用的长短期记忆神经网络、支持向量回归和极限学习机以及未优化的Elman模型,结果显示,WOA-Elman估计模型的均方根误差为1.2113%。最后,分别采用3组电池实验测试数据交替作为训练集,对其余两组电池的SOH进行估计验证,估计结果的均方根偏差最大仅为0.1771%。因此,本工作的方法可以更准确地估计电池SOH,并且具有更好的泛化性能。

关键词: 锂离子电池, SOH估计, 主成分分析, Elman神经网络, 鲸鱼优化算法

Abstract:

Accurate estimation state of health (SOH) of lithium-ion batteries is the key to ensuring the efficient, safe, and sustainable operation of electric vehicles. The accuracy of SOH estimation can be improved with a data-driven method. However, the accuracy of SOH estimation in this method is highly dependent on the selected feature and estimation model. The redundancy between features and the lack of generalization of the estimation model will affect the accurate estimation of battery SOH. According to principal component analysis and whale optimization algorithm (WOA)-Elman, a new SOH estimation method is proposed to reduce the redundancy of input features, increase the model's generalization, and improve the accuracy of SOH estimation. Firstly, the features highly related to the aging of lithium-ion batteries were extracted and selected from the charging process curve. Principal component analysis was used to decrease the dimension of features and reduce the redundancy between features. Then, the WOA method was used to optimize the initial weights and thresholds of the Elman model to establish the WOA-Elman model. The B01 battery was used to train the model while B02 and B03 batteries were used to verify the model. Simultaneously, comparing the commonly used long short-term memory neural network, support vector regression, extreme learning machine, and the unoptimized Elman model. The results show that the root-mean-square error of the WOA-Elman estimation model is 1.2113%. Finally, the SOH of the remaining two groups of batteries was estimated and verified by alternating test data of three groups of batteries as training sets, and the maximum root-mean-square deviation of the estimated results was only 0.1771%. Therefore, the proposed method can estimate battery SOH more accurately and perform better generalization.

Key words: lithium-ion battery, state of health estimation, principal component analysis, elman neural network, whale optimization algorithm

中图分类号: