1 |
张青松, 赵启臣. 过充循环对锂离子电池老化及安全性影响[J]. 高电压技术, 2020, 46(10): 3390-3397.
|
|
ZHANG Q S, ZHAO Q C. Effects of overcharge cycling on the aging and safety of lithium ion batteries[J]. High Voltage Engineering, 2020, 46(10): 3390-3397.
|
2 |
张明杰, 杨凯, 段舒宁, 等. 高能量密度镍钴铝酸锂/钛酸锂电池体系的热稳定性研究[J]. 高电压技术, 2017, 43(7): 2221-2228.
|
|
ZHANG M J, YANG K, DUAN S N, et al. Thermal stability of high energy density LiNi0.815Co0.15Al0.035O2/Li4Ti5O12 battery[J]. High Voltage Engineering, 2017, 43(7): 2221-2228.
|
3 |
王康康, 高飞, 杨凯, 等. 不同健康状态等级的储能磷酸铁锂电池熵变系数及放电产热研究[J]. 高电压技术, 2017, 43(7): 2241-2248.
|
|
WANG K K, GAO F, YANG K, et al. Research of LiFePO4/C energy storage batteriesê entropy coefficient and discharge heat generation based on the state of health[J]. High Voltage Engineering, 2017, 43(7): 2241-2248.
|
4 |
张海林. 高比能量锂离子电池材料及全电池电极的研究[D]. 上海: 上海大学, 2020.
|
|
ZHANG H L. Study on electrode materials and full cell electrode technology of high specific energy lithium ion batteries[D]. Shanghai: Shanghai University, 2020.
|
5 |
索鎏敏, 李泓. 锂离子电池过往与未来[J]. 物理, 2020, 49(1): 17-23.
|
|
SUO L M, LI H. The past, present and future of lithium ion batteries[J]. Physics, 2020, 49(1): 17-23.
|
6 |
黄云辉. 锂离子电池: 20世纪最重要的发明之一[J]. 科学通报, 2019, 64(36): 3811-3816.
|
|
HUANG Y H. Lithium-ion battery: One of the most important inventions in the 20th century[J]. Chinese Science Bulletin, 2019, 64(36): 3811-3816.
|
7 |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64.
|
8 |
孙艳霞, 周园, 申月, 等. 动力型锂离子电池富锂三元正极材料研究进展[J]. 化学通报, 2017, 80(1): 34-40.
|
|
SUN Y X, ZHOU Y, SHEN Y, et al. Lithium rich ternary cathode materials for dynamical type lithium ion battery[J]. Chemistry, 2017, 80(1): 34-40.
|
9 |
李仲明, 李斌, 冯东, 等. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(2): 513-527.
|
|
LI Z M, LI B, FENG D, et al. Research progress of cathode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 513-527.
|
10 |
王爽, 杜志明, 张泽林, 等. 锂离子电池安全性研究进展[J]. 工程科学学报, 2018, 40(8): 901-909.
|
|
WANG S, DU Z M, ZHANG Z L, et al. Research progress on safety of lithium-ion batteries[J]. Chinese Journal of Engineering, 2018, 40(8): 901-909.
|
11 |
李亚楠, 潘芳芳, 赵金保. 锂离子电池针刺安全性的研究进展[J]. 电池, 2022, 52(2): 228-231.
|
|
LI Y N, PAN F F, ZHAO J B. Research progress in nail penetration safety for Li-ion battery[J]. Battery Bimonthly, 2022, 52(2): 228-231.
|
12 |
刘慧, 张彤, 盖福祥, 等. 混合动力汽车三元锂电池基本性能的研究[J]. 农业装备与车辆工程, 2019, 57(11): 92-95.
|
|
LIU H, ZHANG T, GAI F X, et al. Study on basic performance of NCM-Li battery for HEV[J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(11): 92-95.
|
13 |
李夔宁, 谢运成, 谢翌, 等. 基于电化学热耦合模型的富镍锂离子电池产热分析[J]. 储能科学与技术, 2021, 10(3): 1153-1162.
|
|
LI K N, XIE Y C, XIE Y, et al. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model[J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162.
|
14 |
杨坤. 锂离子电池热失控行为研究[D]. 武汉: 江汉大学, 2021.
|
|
YANG K. Research on thermal runaway behavior of lithium-ion batteries[D]. Wuhan: Jianghan University, 2021.
|
15 |
杜光超. 三元锂离子电池高温热失控试验与仿真研究[D]. 青岛: 青岛大学, 2020.
|
|
DU G C. High temperature thermal runaway experiment and simulation research of ternary lithium-ion battery. Qingdao: Qingdao University, 2020.
|
16 |
靳成杰, 尹乐乐, 王振新, 等. 不同类型NCM三元锂离子电池性能分析[J]. 电源技术, 2019, 43(10): 1637-1640.
|
|
JIN C J, YIN L L, WANG Z X, et al. Performance analysis of different types of NCM ternary lithium ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(10): 1637-1640.
|
17 |
王鹏, 王立文, 王帅, 等. 温度对18650三元锂电池放电容量的影响[J]. 技术与市场, 2018, 25(11): 10-14.
|
|
WANG P, WANG L W, WANG S, et al. The effect of temperature on the discharge capacity of 18650 ternary lithium batteries [J]. Technology and Market, 2018, 25(11): 10-14.
|
18 |
李坤. 锂离子动力电池热—电化学耦合特性分析及有限元模拟[D]. 北京: 北京理工大学, 2016.
|
|
LI K. Study on electrochemical thermal analysis and finite element modelling for lithium ion power battery[D]. Beijing: Beijing Institute of Technology, 2016.
|
19 |
陶欢. 锂离子动力电池热失控实验与模拟研究[D]. 武汉: 华中科技大学, 2017.
|
|
TAO H. Experimental and simulation study on thermal runaway of lithium-ion battery[D]. Wuhan: Huazhong University of Science and Technology, 2017.
|
20 |
汪涛, 于维珂. 高镍三元材料匹配钛酸锂负极电池的性能[J]. 电池, 2021, 51(5): 498-501.
|
|
WANG T, YU W K. Performance of high nickel ternary material matching lithium titanate anode battery[J]. Battery Bimonthly, 2021, 51(5): 498-501.
|
21 |
黄文才. 基于COMSOL的锂离子电池热失控模拟分析和研究[D]. 成都: 西南交通大学, 2019.
|
|
HUANG W C. Simulation and research on thermal runaway of lithium ion battery based on COMSOL[D]. Chengdu: Southwest Jiaotong University, 2019.
|
22 |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
|
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
|
23 |
董海斌, 张少禹, 李毅, 等. NCM811高比能锂离子电池热失控火灾特性[J]. 储能科学与技术, 2019, 8(S1): 65-70.
|
|
DONG H B, ZHANG S Y, LI Y, et al. Thermal runaway fire characteristics of lithium ion batteries with high specific energy NCM811[J]. Energy Storage Science and Technology, 2019, 8(S1): 65-70.
|