储能科学与技术 ›› 2022, Vol. 11 ›› Issue (12): 3776-3786.doi: 10.19799/j.cnki.2095-4239.2022.0465

• 储能材料与器件 • 上一篇    下一篇

钴掺杂二氧化铈基层状复合固态电解质的制备及其性能

高清雯(), 杨智昊, 李文鹏, 武文佳(), 王景涛   

  1. 郑州大学化工学院,河南 郑州 450001
  • 收稿日期:2022-08-22 修回日期:2022-09-19 出版日期:2022-12-05 发布日期:2022-12-29
  • 通讯作者: 武文佳 E-mail:1966736319@qq.com;wenjiawu@zzu.edu.cn
  • 作者简介:高清雯(2000—),女,硕士研究生,研究方向为全固态锂电池,E-mail:1966736319@qq.com
  • 基金资助:
    中国博士后科学基金(2022TQ0293);国家自然科学基金(U2004199)

Preparation and performance of Co2+-doped CeO2-based laminar composite solid-state electrolyte

Qingwen GAO(), Zhihao YANG, Wenpeng LI, Wenjia WU(), Jingtao WANG   

  1. School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2022-08-22 Revised:2022-09-19 Online:2022-12-05 Published:2022-12-29
  • Contact: Wenjia WU E-mail:1966736319@qq.com;wenjiawu@zzu.edu.cn

摘要:

开发具有高离子传导率和高力学性能的薄型固态电解质对于制备高性能全固态锂金属电池非常重要。本工作首先制备了钴掺杂的二氧化铈(Co2+@CeO2)纳米片,后将其与聚氧化乙烯(PEO)混合通过真空抽滤制得厚度仅为32 μm的Co2+@CeO2层状复合固态电解质(L-CSE)。富含氧空位的Co2+@CeO2纳米片在提高离子电导率和力学性能方面发挥了重要作用,同时PEO作为黏结剂确保了电解质与电极之间的紧密接触并且增强了其柔韧性。通过改变Co的掺杂量调控纳米片上氧空位含量,重点探究了氧空位含量对Li+传递特性的影响,并对L-CSE的结构组成、力学性能和电化学性能进行了系统研究。结果表明:通过调控Co的掺杂量能够准确控制纳米片上氧空位的含量,且0.33Co2+@CeO2纳米片表面的氧空位含量最多。所制备的L-CSE具有良好的力学性能(弹性模量达到1.147 GPa);30 ℃下,L-CSE的离子传导率达到5.81×10-5 S/cm;60 ℃下Li+迁移数达到0.59。同时由于电解质与锂负极间具有较好的界面稳定性,在0.7 mA/cm2的高电流密度下,组装的锂对称电池能稳定运行40 h。此外,所组装的磷酸铁锂(LFP)/L-CSE/Li固态电池也表现出良好的循环稳定性和倍率性能,在60 ℃、0.5 C下,能够稳定循环200次,容量保持率为83.6%;在2 C放电倍率下,放电比容量能达到120.7 mAh/g。

关键词: 层状复合固态电解质, 锂金属电池, 氧空位, 界面, 锂离子传导

Abstract:

Developing thin solid-state electrolytes with high ionic conductivity and mechanical properties is essential for preparing high-performance all-solid-state lithium metal batteries. Here, Co2+-doped CeO2 (Co2+@CeO2) nanosheets were first prepared, which were subsequently mixed with polyethylene oxide (PEO) to fabricate a thickness of only 32 μm Co2+@CeO2-based laminar composite solid-state electrolyte (L-CSE) through vacuum filtration. The oxygen-vacancy-rich Co2+@CeO2 nanosheets are critical to enhancing ionic conductivity and mechanical properties, while PEO acts as a binder to ensure close contact between electrolytes and electrodes and enhance flexibility. The oxygen-vacancy content on the nanosheets was controlled by changing the doping amount of Co. Meanwhile, the structural composition, mechanical properties, and electrochemical properties of L-CSE were systematically studied, emphasizing the influence of oxygen-vacancy content on Li+ transport properties. The results show that the oxygen-vacancy content on the nanosheets can be accurately controlled by adjusting the doping amount of Co, and the oxygen-vacancy content of 0.33Co2+@CeO2 nanosheets is the highest. The prepared L-CSE displays a thin thickness (32 μm) and good mechanical properties (the elastic modulus reaches 1.147 GPa). At 30 ℃, the ionic conductivity reaches 5.81×10-5 S/cm. The Li+ transference number is 0.59 at 60 ℃. Concurrently, due to the good interfacial stability between the electrolyte and Li anode, the assembled Li symmetric cell can operate stably for more than 40 h at a high current density of 0.7 mA/cm2. Moreover, the assembled LFP/L-CSE/Li solid-state battery exhibited excellent cycling stability and rate performance. It could cycle stably for 200 cycles with a capacity retention rate of 83.6% at 0.5 C and 60 ℃. Meanwhile, the discharge-specific capacity of LFP/L-CSE/Li cells can reach 120.7 mAh/g at 2 C and 60 ℃.

Key words: laminar composite solid-state electrolyte, lithium metal battery, oxygen vacancy, interface, lithium ion conduction

中图分类号: