1 |
FERGUS J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569.
|
2 |
邹文洪, 樊佑, 张焱焱, 等. 安全固态锂电池室温聚合物基电解质的研究进展[J]. 化工进展, 2021, 40(9): 5029-5044.
|
|
ZOU W H, FAN Y, ZHANG Y Y, et al. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044.
|
3 |
潘迪, 孔江榕, 刘欣楠, 等. 湿化学法制备石榴石型固态电解质Li7La3Zr2O12[J]. 化工进展, 2021, 40(S2): 334-339.
|
|
PAN D, KONG J R, LIU X N, et al. Preparation Li7La3Zr2O12 garnet solid-state electrolyte by wet-chemical technique[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 334-339.
|
4 |
贺子建, 刘亚飞, 陈彦彬. 无机有机复合固态电解质研究进展[J]. 山东化工, 2020, 49(12): 58-59.
|
|
HE Z J, LIU Y F, CHEN Y B. Research progress of inorganic-organic composite solid electrolyte[J]. Shandong Chemical Industry, 2020, 49(12): 58-59.
|
5 |
WANG Y J, PAN Y, KIM D. Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes[J]. Journal of Power Sources, 2006, 159(1): 690-701.
|
6 |
习磊, 张德超, 刘军. 应用于全固态锂电池的复合固态电解质研究进展[J]. 中国材料进展, 2021, 40(8): 607-617.
|
|
XI L, ZHANG D C, LIU J. Research progress of composite solid electrolytes for all-solid-state lithium batteries[J]. Materials China, 2021, 40(8): 607-617.
|
7 |
DING L, LI L B, LIU Y C, et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater[J]. Nature Sustainability, 2020, 3(4): 296-302.
|
8 |
THEBO K H, QIAN X T, ZHANG Q, et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nature Communications, 2018, 9: 1486.
|
9 |
WU X L, CUI X L, WU W J, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes[J]. Angewandte Chemie International Edition, 2019, 58(51): 18524-18529.
|
10 |
LIU G Z, SHEN J, LIU Q, et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination[J]. Journal of Membrane Science, 2018, 548: 548-558.
|
11 |
ZHAI P F, PENG N, SUN Z Y, et al. Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2020, 8(44): 23344-23353.
|
12 |
JIANG S H, ZHANG R Y, LIU H X, et al. Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2020, 142(14): 6461-6466.
|
13 |
DESHPANDE S, PATIL S, KUCHIBHATLA S V, et al. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide[J]. Applied Physics Letters, 2005, 87(13): doi: 10.1063/1.2061873.
|
14 |
CHEN S Q, LI L P, HU W B, et al. Anchoring high-concentration oxygen vacancies at interfaces of CeO2- x/Cu toward enhanced activity for preferential CO oxidation[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22999-23007.
|
15 |
AO X, WANG X T, TAN J W, et al. Nanocomposite with fast Li+ conducting percolation network: Solid polymer electrolyte with Li+ non-conducting filler[J]. Nano Energy, 2021, 79: doi:10.1016/j.nanoen.2020.105475.
|
16 |
CHEN H, ADEKOYA D, HENCZ L, et al. Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery[J]. Advanced Energy Materials, 2020, 10(21): doi: 10.1002/aenm.202000049.
|
17 |
LI W W, ZHANG S P, WANG B R, et al. Nanoporous adsorption effect on alteration of the Li+ diffusion pathway by a highly ordered porous electrolyte additive for high-rate all-solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23874-23882.
|
18 |
SHENG O W, JIN C B, LUO J M, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance[J]. Nano Letters, 2018, 18(5): 3104-3112.
|
19 |
WENG Y T, LIU H W, PEI A, et al. An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte[J]. Nature Communications, 2019, 10: 5824.
|
20 |
SHIM J, KIM H J, KIM B G, et al. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries[J]. Energy & Environmental Science, 2017, 10(9): 1911-1916.
|
21 |
WAN J, XIE J, MACKANIC D G, et al. Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries[J]. Materials Today Nano, 2018, 4: 1-16.
|
22 |
LU Y, ZHAO C Z, YUAN H, et al. Critical current density in solid-state lithium metal batteries: Mechanism, influences, and strategies[J]. Advanced Functional Materials, 2021, 31(18): doi: 10.1002/adfm.202009925.
|