储能科学与技术 ›› 2022, Vol. 11 ›› Issue (12): 3787-3799.doi: 10.19799/j.cnki.2095-4239.2022.0358
陈思远1(), 王燕鸿1,2,3, 郎雪梅1,2,3, 樊栓狮1,2,3()
收稿日期:
2022-06-28
修回日期:
2022-08-10
出版日期:
2022-12-05
发布日期:
2022-12-29
通讯作者:
樊栓狮
E-mail:cecsy@mail.scut.edu.cn;ssfan@scut.edu.cn
作者简介:
陈思远(1996—),男,博士研究生,主要从事气体水合物科学与技术研究,E-mail:cecsy@mail.scut.edu.cn。
基金资助:
Siyuan CHEN1(), Yanhong WANG1,2,3, Xuemei LANG1,2,3, Shuanshi FAN1,2,3()
Received:
2022-06-28
Revised:
2022-08-10
Online:
2022-12-05
Published:
2022-12-29
Contact:
Shuanshi FAN
E-mail:cecsy@mail.scut.edu.cn;ssfan@scut.edu.cn
摘要:
在碳达峰、碳中和的时代背景下,氢能等清洁绿色能源成为能源转型的关键,储氢技术作为氢能从生产到应用的中间桥梁而备受关注。笼型水合物是一种潜在的氢气存储材料,但储氢速率慢、储氢量低制约了水合储氢技术的工业化进程。因此,本文综述了近年来动力学强化水合储氢技术的研究进展,着重介绍了氢气水合物成核、生长动力学机理、提高驱动力、扩大气液接触面积以及改善扩散通道等动力学强化技术,并从储氢速率、储氢密度等方面总结了当前的动力学强化技术,以期促进相关研究的发展。本文指出未来相关工作应在以下几个方面展开:首先,深化氢气水合物的成核、生长和稳定机制研究;其次,寻求高效高驱动力的热力学促进剂,从根本上提高驱动力;最后,高效热力学促进剂与改善氢气水合物的扩散通道相结合,实现高储量和高速率的双重优化。
中图分类号:
陈思远, 王燕鸿, 郎雪梅, 樊栓狮. 动力学强化水合储氢技术研究进展[J]. 储能科学与技术, 2022, 11(12): 3787-3799.
Siyuan CHEN, Yanhong WANG, Xuemei LANG, Shuanshi FAN. Review of the kinetics enhancement technology of hydrogen storage in clathrate hydrates[J]. Energy Storage Science and Technology, 2022, 11(12): 3787-3799.
表3
不同样品量对水合储氢能力的影响"
促进剂(物质的量分数) | 温度/K | 压力/MPa | 样品量 | 储氢量/% | 文献 |
---|---|---|---|---|---|
0.5%THF | 255 | 60 | 1 g | 3.4 | Sugahara[ |
0.58%丙酮 | 255 | 74 | 1 g | 3.6 | Sugahara[ |
2.54%TBABh | 253 | 70 | 1 g | 0.5 | Shin[ |
无 | 140 | 15~18 | 2 g | 2.7 | Kumar[ |
5.6%呋喃 | 275.1 | 41.8 | 3 g | 0.59 | Tsuda[ |
5.6%THT | 275.1 | 41.5 | 3 g | 0.6 | |
5.56%THF | 277.15 | 66.4 | 3 g | 0.835 | Ogata[ |
1.0%THF | 270 | 13.8 | 5 g | 0.43 | Strobel[ |
5.56%THF | 270 | 57 | 5 g | 0.98 | |
2.71%TBAB | 279.5 | 13.8 | 5 g | 0.214 | Strobel[ |
5.56%THF | 265.1 | 5.0 | 7.36 g | 0.19 | Yoshioka[ |
5.56%THF | 266.7 | 6.5 | 10 g | 0.28 | Nagai[ |
5.6%CP | 275.15 | 18 | 20 g | 0.27 | 邓灿[ |
5.6%THF | 270 | 11.6 | 20 g | 0.4 | Su[ |
2.0%THF | 278 | 8.8 | 190 mL | 0.12 | Veluswamy[ |
3.7%TBAB | 281.15 | 16 | 100 mL | 0.046 | Treuba[ |
3.4%TBAF | 294.15 | 13 | 100 mL | 0.024 | Treuba[ |
表5
在275.15 K下不同压力驱动力下水合储氢实验数据汇总表[29, 31, 49]"
添加剂(摩尔分数) | 实验压力/MPa | 驱动力△P/MPa | R1/(n/n·h-1)① | 生成时间t75②/h | 储氢量/% |
---|---|---|---|---|---|
5.0%THT | 15.4 | 12 | 0.485 | 0.38 | 0.25 |
5.0%THT | 21.4 | 18 | 0.7 | 0.5 | 0.37 |
5.0%THT | 32.1 | 28.7 | 0.94 | 0.52 | 0.43 |
5.0%呋喃 | 15.5 | 11.5 | 0.4 | 0.45 | 0.23 |
5.0%呋喃 | 23.6 | 19.6 | 0.49 | 0.52 | 0.44 |
5.0%呋喃 | 32.6 | 28.6 | 0.79 | 0.45 | 0.50 |
5.0%呋喃 | 41.8 | 37.4 | 1.08 | 0.14 | 0.59 |
5.6%THF | 11.4 | 9.0 | 0.166 | — | 0.26 |
5.6%THF | 20.1 | 17.7 | 0.38 | 2.4 | 0.345 |
5.6%THF | 31.7 | 29.3 | 0.78 | 3.8 | 0.51 |
5.6%THF | 40.7 | 38.3 | 1.22 | 2.7 | 0.665 |
5.6%THF | 66.4 | 64.0 | 1.48 | 0.93 | 0.835 |
1 | TZIMAS E, FILIOU C, PETEVES S D, et al. Hydrogen storage: State of the art and future perspective[J]. Environmental Science, 2003: 1-91. |
2 | WIJAYANTA A T, ODA T, PURNOMO C W, et al. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15026-15044. |
3 | ZU L, XU H, ZHANG Q, et al. Design of filament-wound spherical pressure vessels based on non-geodesic trajectories[J]. Composite Structures, 2019, 218: 71-78. |
4 | THOMAS K M. Adsorption and desorption of hydrogen on meta-organic framework materials for storage applications: Comparison with other nanoporous materials[J]. Dalton Transactions, 2009(9): 1487. |
5 | ZHENG J Y, LIU X X, XU P, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1048-1057. |
6 | WEN J X, MADHAV RAO V C, TAM V H Y. Numerical study of hydrogen explosions in a refuelling environment and in a model storage room[J]. International Journal of Hydrogen Energy, 2010, 35(1): 385-394. |
7 | BINIWALE R B, RAYALU S, DEVOTTA S, et al. Chemical hydrides: A solution to high capacity hydrogen storage and supply[J]. International Journal of Hydrogen Energy, 2008, 33(1): 360-365. |
8 | ZHANG Y, BHATTACHARJEE G, KUMAR R, et al. Solidified hydrogen storage (solid-HyStore) via clathrate hydrates[J]. Chemical Engineering Journal, 2022, 431: doi:10.1016/j.cej.2021.133702. |
9 | SLOAN E D J, KOH C A, KOH C A. Clathrate hydrates of natural gases[M]. Boca Raton: CRC Press, 2007. |
10 | ENGLEZOS P. Clathrate hydrates[J]. Industrial & Engineering Chemistry Research, 1993, 32(7): 1251-1274. |
11 | MORI Y H. Recent advances in hydrate-based technologies for natural gas storage—a review[J]. Journal Fo Chemical Industry and Engineering, 2003, 54(S1): 1-17. |
12 | DUC N H, CHAUVY F, HERRI J M. CO2 capture by hydrate crystallization-A potential solution for gas emission of steelmaking industry[J]. Energy Conversion and Management, 2007, 48(4): 1313-1322. |
13 | KANG S P, LEE H E. Recovery of CO2 from flue gas using gas hydrate: Thermodynamic verification through phase equilibrium measurements[J]. Environmental Science & Technology, 2000, 34(20): 4397-4400. |
14 | LINGA P, KUMAR R, ENGLEZOS P. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide[J]. Journal of Hazardous Materials, 2007, 149(3): 625-629. |
15 | LEE S Y, LIANG L Y, RIESTENBERG D, et al. CO2 hydrate composite for ocean carbon sequestration[J]. Environmental Science & Technology, 2003, 37(16): 3701-3708. |
16 | PARK K N, HONG S Y, LEE J W, et al. A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+)[J]. Desalination, 2011, 274(1/2/3): 91-96. |
17 | CHA I, LEE S, LEE J D, et al. Separation of SF6 from gas mixtures using gas hydrate formation[J]. Environmental Science & Technology, 2010, 44(16): 6117-6122. |
18 | SEO Y, TAJIMA H, YAMASAKI A, et al. A new method for separating HFC-134a from gas mixtures using clathrate hydrate formation[J]. Environmental Science & Technology, 2004, 38(17): 4635-4639. |
19 | SCHÜTH F. Hydrogen and hydrates[J]. Nature, 2005, 434(7034): 712-713. |
20 | HU Y H, RUCKENSTEIN E. Clathrate hydrogen hydrate—a promising material for hydrogen storage[J]. Angewandte Chemie (International Ed in English), 2006, 45(13): 2011-2013. |
21 | PATCHKOVSKII S, TSE J S. Thermodynamic stability of hydrogen clathrates[J]. PNAS, 2003, 100(25): 14645-14650. |
22 | ZHANG Y H, ZHANG P J, YUAN Z M, et al. An investigation on electrochemical hydrogen storage performances of Mg-Y-Ni alloys prepared by mechanical milling[J]. Journal of Rare Earths, 2015, 33(8): 874-883. |
23 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology: Current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. | |
25 | DYADIN Y A, LARIONOV E G, MANAKOV A Y, et al. Clathrate hydrates of hydrogen and neon[J]. Mendeleev Communications, 1999, 9(5): 209-210. |
26 | MAO W L. Hydrogen clusters in clathrate hydrate[J]. Science, 2002, 297(5590): 2247-2249. |
27 | MAO W L, MAO H K. Hydrogen storage in molecular compounds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(3): 708-710. |
28 | ENERGY D O. Target explanation document: Onboard hydrogen storage for light-duty fuel cell vehicles[M]. the US DRIVE Partnership, 2017. |
29 | OGATA K, HASHIMOTO S, SUGAHARA T, et al. Storage capacity of hydrogen in tetrahydrofuran hydrate[J]. Chemical Engineering Science, 2008, 63(23): 5714-5718. |
30 | DI PROFIO P, CANALE V, GERMANI R, et al. Reverse micelles enhance the formation of clathrate hydrates of hydrogen[J]. Journal of Colloid and Interface Science, 2018, 516: 224-231. |
31 | TSUDA T, OGATA K, HASHIMOTO S, et al. Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates[J]. Chemical Engineering Science, 2009, 64(19): 4150-4154. |
32 | TRUEBA A T, RADOVIĆ I R, ZEVENBERGEN J F, et al. Kinetic measurements and in situ Raman spectroscopy study of the formation of TBAF semi-hydrates with hydrogen and carbon dioxide[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7326-7334. |
33 | ANDERSON R, CHAPOY A, TOHIDI B. Phase relations and binary clathrate hydrate formation in the system H2-THF-H2O[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2007, 23(6): 3440-3444. |
34 | TRUEBA A T, ROVETTO L J, FLORUSSE L J, et al. Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters[J]. Fluid Phase Equilibria, 2011, 307(1): 6-10. |
35 | SAKAMOTO J, HASHIMOTO S, TSUDA T, et al. Thermodynamic and Raman spectroscopic studies on hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrates[J]. Chemical Engineering Science, 2008, 63(24): 5789-5794. |
36 | KASHCHIEV D, FIROOZABADI A. Induction time in crystallization of gas hydrates[J]. Journal of Crystal Growth, 2003, 250(3/4): 499-515. |
37 | SLOAN E D, FLEYFEL F. A molecular mechanism for gas hydrate nucleation from ice[J]. AIChE Journal, 1991, 37(9): 1281-1292. |
38 | RADHAKRISHNAN R, TROUT B L. A new approach for studying nucleation phenomena using molecular simulations: Application to CO2 hydrate clathrates[J]. The Journal of Chemical Physics, 2002, 117(4): 1786-1796. |
39 | JACOBSON L C, HUJO W, MOLINERO V. Amorphous precursors in the nucleation of clathrate hydrates[J]. Journal of the American Chemical Society, 2010, 132(33): 11806-11811. |
40 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 北京: 化学工业出版社, 2008. |
CHEN G J, SUN C Y, MA Q L. Gas hydrate science and technology [M]. Beijing: Chemical Industry Press, 2008. | |
41 | DU J, WANG L, LIANG D, et al. Phase equilibria and dissociation enthalpies of hydrogen semi-clathrate hydrate with tetrabutyl ammonium nitrate[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 603-609. |
42 | LUNINE J I, STEVENSON D J. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system[J]. The Astrophysical Journal Letters Supplement Series, 1985, 58: 493. |
43 | ZHONG J R, CHEN L T, LIU T C, et al. Sieving of hydrogen-containing gas mixtures with tetrahydrofuran hydrate[J]. The Journal of Physical Chemistry C, 2017, 121(50): 27822-27829. |
44 | VLASOV V A. Diffusion model of gas hydrate formation from ice[J]. Heat and Mass Transfer, 2016, 52(3): 531-537. |
45 | DARTOIS E, LANGLET F. Carbon dioxide clathrate hydrate formation at low temperature[J]. Astronomy & Astrophysics, 2021, 652: A74. |
46 | TRUEBA A T, RADOVIĆ I R, ZEVENBERGEN J F, et al. Kinetics measurements and in situ Raman spectroscopy of formation of hydrogen-tetrabutylammonium bromide semi-hydrates[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5790-5797. |
47 | VELUSWAMY H P, LINGA P. Macroscopic kinetics of hydrate formation of mixed hydrates of hydrogen/tetrahydrofuran for hydrogen storage[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4587-4596. |
48 | SUGAHARA T, HAAG J C, PRASAD P S R, et al. Increasing hydrogen storage capacity using tetrahydrofuran[J]. Journal of the American Chemical Society, 2009, 131(41): 14616-14617. |
49 | SUGAHARA T, HAAG J C, WARNTJES A A, et al. Large-cage occupancies of hydrogen in binary clathrate hydrates dependent on pressures and guest concentrations[J]. The Journal of Physical Chemistry C, 2010, 114(35): 15218-15222. |
50 | SHIN K, KIM Y, STROBEL T A, et al. Tetra-n-butylammonium borohydride semiclathrate: A hybrid material for hydrogen storage[J]. The Journal of Physical Chemistry A, 2009, 113(23): 6415-6418. |
51 | KUMAR R, KLUG D D, RATCLIFFE C I, et al. Low-pressure synthesis and characterization of hydrogen-filled ice Ic[J]. Angewandte Chemie (International Ed in English), 2013, 52(5): 1531-1534. |
52 | STRÖBEL R, GARCHE J, MOSELEY P T, et al. Hydrogen storage by carbon materials[J]. Journal of Power Sources, 2006, 159(2): 781-801. |
53 | STROBEL T A, KOH C A, SLOAN E D. Hydrogen storage properties of clathrate hydrate materials[J]. Fluid Phase Equilibria, 2007, 261(1/2): 382-389. |
54 | YOSHIOKA H, OTA M, SATO Y, et al. Decomposition kinetics and recycle of binary hydrogen-tetrahydrofuran clathrate hydrate[J]. AIChE Journal, 2011, 57(1): 265-272. |
55 | NAGAI Y, YOSHIOKA H, OTA M, et al. Binary hydrogen-tetrahydrofuran clathrate hydrate formation kinetics and models[J]. AIChE Journal, 2008, 54(11): 3007-3016. |
56 | 邓灿, 梁德青, 李栋梁. 环戊烷-氢气水合物形成过程研究[J]. 石油化工, 2009, 38(9): 951-956. |
DENG C, LIANG D Q, LI D L. Formation of cyclopentane-hydrogen clathrate hydrates[J]. Petrochemical Technology, 2009, 38(9): 951-956. | |
57 | SU F B, BRAY C L, CARTER B O, et al. Reversible hydrogen storage in hydrogel clathrate hydrates[J]. Advanced Materials, 2009, 21(23): 2382-2386. |
58 | GHAANI M R, SCHICKS J M, ENGLISH N J. A review of reactor designs for hydrogen storage in clathrate hydrates[J]. Applied Sciences, 2021, 11(2): 469. |
59 | IWAI Y, HIRATA M. Molecular dynamics simulation of diffusion of hydrogen in binary hydrogen-tetrahydrofuran hydrate[J]. Molecular Simulation, 2012, 38(4): 333-340. |
60 | HASEGAWA T, BRUMBY P E, YASUOKA K, et al. Mechanism for H2 diffusion in sII hydrates by molecular dynamics simulations[J]. The Journal of Chemical Physics, 2020, 153(5): 054706. |
61 | GORMAN P D, ENGLISH N J, MACELROY J M D. Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates[J]. The Journal of Chemical Physics, 2012, 136(4): 044506. |
62 | WANG Y H, YIN K D, LANG X M, et al. Hydrogen storage in sH binary hydrate: Insights from molecular dynamics simulation[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15748-15760. |
63 | WANG Y H, YIN K D, FAN S S, et al. The molecular insight into the "Zeolite-ice" as hydrogen storage material[J]. Energy, 2021, 217: doi:10.1016/j.energy.2020.119406. |
64 | DU J W, LIANG D Q, LI D L, et al. Experimental determination of the equilibrium conditions of binary gas hydrates of cyclopentane + oxygen, cyclopentane + nitrogen, and cyclopentane + hydrogen[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11797-11800. |
65 | DUARTE A R C, SHARIATI A, PETERS C J. Phase equilibrium measurements of structure sH hydrogen clathrate hydrates with various promoters[J]. Journal of Chemical & Engineering Data, 2009, 54(5): 1628-1632. |
66 | LIU J X, YAN Y J, CHEN G, et al. Prediction of efficient promoter molecules of sH hydrogen hydrate: An ab initio study[J]. Chemical Physics, 2019, 516: 15-21. |
67 | KOMATSU H, YOSHIOKA H, OTA M, et al. Phase equilibrium measurements of hydrogen–tetrahydrofuran and hydrogen–cyclopentane binary clathrate hydrate systems[J]. Journal of Chemical & Engineering Data, 2010, 55(6): 2214-2218. |
68 | BURNHAM C J, FUTERA Z, ENGLISH N J. Quantum and classical inter-cage hopping of hydrogen molecules in clathrate hydrate: Temperature and cage-occupation effects[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 19(1): 717-728. |
69 | 邓灿. 氢气水合物形成过程研究 [D]. 广州: 中国科学院广州能源研究所, 2009. |
Deng C. Study on the hydrogen hydrate formation[D]. Guangzhou: Guangzhou Institute of Energy, Chinese Academy of Science. 2009. | |
70 | TRINH T T, WAAGE M H, VAN ERP T S, et al. Low barriers for hydrogen diffusion in sII clathrate[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(21): 13808-13812 |
71 | HE Y, SUN M T, CHEN C, et al. Surfactant-based promotion to gas hydrate formation for energy storage[J]. Journal of Materials Chemistry A, 2019, 7(38): 21634-21661. |
72 | VELUSWAMY H P, ANG W J, ZHAO D, et al. Influence of cationic and non-ionic surfactants on the kinetics of mixed hydrogen/tetrahydrofuran hydrates[J]. Chemical Engineering Science, 2015, 132: 186-199. |
73 | VELUSWAMY H P, CHEN J Y, LINGA P. Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates[J]. Chemical Engineering Science, 2015, 126: 488-499. |
74 | ZHANG Y, BHATTACHARJEE G, ZHENG J J, et al. Hydrogen storage as clathrate hydrates in the presence of 1, 3-dioxolane as a dual-function promoter[J]. Chemical Engineering Journal, 2022, 427: doi: 10.1016/j.cej.2021.131771. |
75 | YU C, FAN S S, LANG X M, et al. Hydrogen and chemical energy storage in gas hydrate at mild conditions[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14915-14921. |
76 | FANG Y J, XIE Y M, ZHOU X F, et al. Influence of activated carbon to the hydrogen storage characteristics of THF hydrate[J]. Advanced Materials Research, 2014, 887/888: 493-496. |
77 | 吕秋楠, 宋永臣, 李小森. 鼓泡器中环戊烷-甲烷-盐水体系水合物的生成动力学[J]. 化工进展, 2016, 35(12): 3777-3782. |
LÜ Q N, SONG Y C, LI X S. Formation kinetics of cyclopentane-methane hydrate in NaCl solution with a bubbling equipment[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3777-3782. | |
78 | LI G, LIU D P, XIE Y M, et al. Study on effect factors for CO2 hydrate rapid formation in a water-spraying apparatus[J]. Energy & Fuels, 2010, 24(8): 4590-4597. |
79 | SAHA D, DENG S G. Accelerated formation of THF-H2 clathrate hydrate in porous media[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(11): 8414-8418. |
80 | SU F B, BRAY C L, TAN B E, et al. Rapid and reversible hydrogen storage in clathrate hydrates using emulsion-templated polymers[J]. Advanced Materials, 2008, 20(14): 2663-2666. |
81 | ZHAO W H, WANG L, BAI J, et al. Spontaneous formation of one-dimensional hydrogen gas hydrate in carbon nanotubes[J]. Journal of the American Chemical Society, 2014, 136(30): 10661-10668. |
82 | LEE H E, LEE J W, KIM D Y, et al. Tuning clathrate hydrates for hydrogen storage[J]. Nature, 2005, 434(7034): 743-746. |
83 | KIM D Y, PARK J, LEE J W, et al. Critical guest concentration and complete tuning pattern appearing in the binary clathrate hydrates[J]. Journal of the American Chemical Society, 2006, 128(48): 15360-15361. |
84 | ROMáN-PéREZ G, MOAIED M, SOLER J M,et al. Stability, adsorption,and diffusion of CH4, CO2, and H2 in clathrate hydrates[J]. Physical Review Letters,2010, 105: doi: 10.1103/PhysRevLett.105.145901. |
[1] | 陆佳敏, 徐俊辉, 王卫东, 王浩, 徐孜俊, 陈留平. 大规模地下储氢技术研究展望[J]. 储能科学与技术, 2022, 11(11): 3699-3707. |
[2] | 李建, 张立新, 李瑞懿, 杨啸, 张挺. 高压储氢容器研究进展[J]. 储能科学与技术, 2021, 10(5): 1835-1844. |
[3] | 王旭东, 尹钊, 刘畅, 张华良, 徐玉杰, 陈海生, 周学志. 储能技术在军事领域中的应用与展望[J]. 储能科学与技术, 2020, 9(S1): 52-61. |
[4] | 赵鑫, 可丹丹, 吉力强, 胡锋, 蔡颖. Sm对La0.5Nd0.35-xSmxMg0.15Ni3.5合金晶体结构和储氢性能的影响[J]. 储能科学与技术, 2020, 9(4): 1066-1073. |
[5] | 许壮, 杨康, 董文平, 何广利. 燃料电池车载储氢瓶结构对加氢温升的影响[J]. 储能科学与技术, 2020, 9(3): 679-683. |
[6] | 闫红丽, 敬志良, 陆佐伟, 王玉琪, 吴震. 基于化学吸/脱附固态储氢的PEMFC动力系统耦合特性研究[J]. 储能科学与技术, 2020, 9(1): 152-161. |
[7] | 李璐伶, 樊栓狮, 陈秋雄, 杨光, 温永刚. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
[8] | 丰洪微,范哲超. 羟基镍粉对Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3合金电极电化学性能的影响[J]. 储能科学与技术, 2018, 7(2): 288-293. |
[9] | 陈俊, 陈秋雄, 陈运文, 樊栓狮, 王燕鸿, 杨亮, 郎雪梅, 张雯翔, 黄怡, 熊文涛, 温永刚. 水合物储能技术研究现状[J]. 储能科学与技术, 2015, 4(2): 131-140. |
[10] | 黄澍, 王玮, 王康丽, 蒋凯, 程时杰. 石墨烯在化学储能中的研究进展[J]. 储能科学与技术, 2014, 3(2): 85-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||