1 |
GUO Y Q, PAN F W, CHEN W M, et al. The controllable design of catalyst inks to enhance PEMFC performance: A review[J]. Electrochemical Energy Reviews, 2021, 4(1): 67-100.
|
2 |
OFFER G J. "PEM fuel cell electrocatalysts and catalyst layers: Fundamentals and applications"[J]. Platinum Metals Review, 2009, 53(4): 219-220.
|
3 |
DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.
|
4 |
BHARTI A, CHERUVALLY G. Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2017, 360: 196-205.
|
5 |
黄龙, 徐海超, 荆碧, 等. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学, 2022, 28(1): 16-32.
|
|
HUANG L, XU H C, JING B, et al. Progress of Pt-based catalysts in proton-exchange membrane fuel cells: A review[J]. Journal of Electrochemistry, 2022, 28(1): 16-32.
|
6 |
胡冶州, 王双, 申涛, 等. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277.
|
|
HU Y Z, WANG S, SHEN T, et al. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction[J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277.
|
7 |
TANG M H, ZHANG S M, CHEN S L. Pt utilization in proton exchange membrane fuel cells: Structure impacting factors and mechanistic insights[J]. Chemical Society Reviews, 2022, 51(4): 1529-1546.
|
8 |
ZHANG S M, CHEN M H, ZHAO X, et al. Advanced noncarbon materials as catalyst supports and non-noble electrocatalysts for fuel cells and metal-air batteries[J]. Electrochemical Energy Reviews, 2021, 4(2): 336-381.
|
9 |
ZENG J H, LEE J Y, ZHOU W J. Activities of Pt/C catalysts prepared by low temperature chemical reduction methods[J]. Applied Catalysis A: General, 2006, 308: 99-104.
|
10 |
KIM M, PARK J N, KIM H, et al. The preparation of Pt/C catalysts using various carbon materials for the cathode of PEMFC[J]. Journal of Power Sources, 2006, 163(1): 93-97.
|
11 |
WANG D L, XIN H L, HOVDEN R, et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature Materials, 2013, 12(1): 81-87.
|
12 |
WANG Y J, ZHAO N N, FANG B Z, et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity[J]. Chemical Reviews, 2015, 115(9): 3433-3467.
|
13 |
LI J R, SHARMA S, LIU X M, et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis[J]. Joule, 2019, 3(1): 124-135.
|
14 |
CUI C H, GAN L, LI H H, et al. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition[J]. Nano Letters, 2012, 12(11): 5885-5889.
|
15 |
马宝华, 杨冬霞, 赵云昆, 等. 胶体法制备高活性Pt-Ni双金属纳米粒子及其甲醇催化性能研究[J]. 稀有金属材料与工程, 2016, 45(10): 2697-2702.
|
|
MA B H, YANG D X, ZHAO Y K, et al. Colloidal synthesis of highly active Pt-Ni Bi-metallic nanoparticles and their methanol electrocatalytic properties[J]. Rare Metal Materials and Engineering, 2016, 45(10): 2697-2702.
|
16 |
王巧平, 田建华, 陈笑稳, 等. 无机胶体法制备燃料电池用Pt3Cr/C催化剂[J]. 南开大学学报(自然科学版), 2008, 41(5): 82-86.
|
|
WANG Q P, TIAN J H, CHEN X W, et al. Preparation of Pt3Cr/C catalysts by inorganic colloid method[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2008, 41(5): 82-86.
|
17 |
LI H, XIN Q, LI W, et al. An improved palladium-based DMFCs cathode catalyst[J]. Chemical Communications, 2004(23): 2776-2777.
|
18 |
PAK HOE L, BOAVENTURA M, LAGARTEIRA T, et al. Polyol synthesis of reduced graphene oxide supported platinum electrocatalysts for fuel cells: Effect of Pt precursor, support oxidation level and pH[J]. International Journal of Hydrogen Energy, 2018, 43(35): 16998-17011.
|
19 |
WANG Y J, ZHAO N N, FANG B Z, et al. Effect of different solvent ratio (ethylene glycol/water) on the preparation of Pt/C catalyst and its activity toward oxygen reduction reaction[J]. RSC Advances, 2015, 5(70): 56570-56577.
|
20 |
LEBÈGUE E, BARANTON S, COUTANCEAU C. Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation[J]. Journal of Power Sources, 2011, 196(3): 920-927.
|
21 |
INABA M, QUINSON J, ARENZ M. PH Matters: The influence of the catalyst ink on the oxygen reduction activity determined in thin film rotating disk electrode measurements[J]. Journal of Power Sources, 2017, 353: 19-27.
|
22 |
牟群英, 李贤军. 微波加热技术的应用与研究进展[J]. 物理, 2004, 33(6): 438-442.
|
|
MOU Q Y, LI X J. Applications of microwave heating technology[J]. Physics, 2004, 33(6): 438-442.
|
23 |
SAKTHIVEL M, SCHLANGE A, KUNZ U, et al. Microwave assisted synthesis of surfactant stabilized platinum/carbon nanotube electrocatalysts for direct methanol fuel cell applications[J]. Journal of Power Sources, 2010, 195(20): 7083-7089.
|
24 |
QUINSON J, INABA M, NEUMANN S, et al. Investigating particle size effects in catalysis by applying a size-controlled and surfactant-free synthesis of colloidal nanoparticles in alkaline ethylene glycol: Case study of the oxygen reduction reaction on Pt[J]. ACS Catalysis, 2018, 8(7): 6627-6635.
|
25 |
WANG Y, REN J W, DENG K, et al. Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media[J]. Chemistry of Materials, 2000, 12(6): 1622-1627.
|
26 |
李昕皓. 微波加速有机反应的本质研究[D]. 北京: 北京化工大学, 2016.
|
|
LI X H. Origin of the acceleration of organic reactions under microwave irradiation[D]. Beijing: Beijing University of Chemical Technology, 2016.
|
27 |
ASAKUMA Y, NAKATA R, SAPTORO A. Bubble formation in water with magnetite nanoparticles during microwave irradiation[J]. Chemical Engineering and Processing: Process Intensification, 2017, 119: 101-105.
|
28 |
ASAKUMA Y, MATSUMURA S, SAPTORO A. Method for suppressing superheating behavior during microwave assisted nanoparticle formation by ethylene glycol addition[J]. Chemical Engineering and Processing - Process Intensification, 2018, 132: 11-15.
|