1 |
MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651-652.
|
2 |
LIM C, HONG Y J, JUNG J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels[J]. Science Advances, 2021, 7(19): doi: 10.1126/sciadv.abd3716.
|
3 |
MARION J S, GUPTA N, CHEUNG H, et al. Thermally drawn highly conductive fibers with controlled elasticity[J]. Advanced Materials, 2022, 34(19): doi: 10.1002/adma.202201081.
|
4 |
FEINER R, DVIR T. Tissue-electronics interfaces: From implantable devices to engineered tissues[J]. Nature Reviews Materials, 2018, 3: 17076.
|
5 |
WANG Y Z, SHAN X Y, MA L P, et al. A desolvated solid-solid interface for a high-capacitance electric double layer[J]. Advanced Energy Materials, 2019, 9(12): doi: 10.1002/aenm. 201803715.
|
6 |
SON W, CHUN S, LEE J M, et al. Twist-stabilized, coiled carbon nanotube yarns with enhanced capacitance[J]. ACS Nano, 2022, 16(2): 2661-2671.
|
7 |
YANG J, YU C, FAN X M, et al. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors[J]. Energy & Environmental Science, 2016, 9(4): 1299-1307.
|
8 |
TENG C L, HAN Y, FU G Y, et al. Isostatic pressure-assisted nanocasting preparation of zeolite templated carbon for high-performance and ultrahigh rate capability supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(39): 18938-18947.
|
9 |
YANG I, KWON D, KIM M S, et al. A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors[J]. Carbon, 2018, 132: 503-511.
|
10 |
LONG S S, FENG Y C, HE F L, et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators[J]. Nano Energy, 2021, 85: doi:10.1016/j.nanoen.2021.105973.
|
11 |
JIANG Q, KURRA N, ALHABEB M, et al. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors[J]. Advanced Energy Materials, 2018, 8(13): doi:10.1002/aenm.201703043.
|
12 |
GUO W, YU C, LI S F, et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives[J]. Nano Energy, 2019, 57: 459-472.
|
13 |
LIU S, KANG L, HU J, et al. Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors [J]. ACS Energy Letters, 2021, 6(9): 3011-3019.
|
14 |
KAVINKUMAR T, SEENIVASAN S, LEE H H, et al. Interface-modulated uniform outer nanolayer: A category of electrodes of nanolayer-encapsulated core-shell configuration for supercapacitors[J]. Nano Energy, 2021, 81: doi:10.1016/j.nanoen.2020.105667.
|
15 |
DENG T, LU Y, ZHANG W, et al. Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes[J]. Advanced Energy Materials, 2018, 8(7): doi:10.1002/aenm.201702294.
|
16 |
LI S F, SHARMA N, YU C, et al. Operando tailoring of defects and strains in corrugated β-Ni(OH)2 nanosheets for stable and high-rate energy storage[J]. Advanced Materials, 2021, 33(2): doi: 10.1002/adma.202006147.
|
17 |
GUO W, DUN C C, YU C, et al. Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage[J]. Nature Communications, 2022, 13: 1409.
|
18 |
YANG J, YU C, HU C, et al. Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors[J]. Advanced Functional Materials, 2018, 28(44): doi:10.1002/adfm.201803272.
|
19 |
LI S F, YU C, YANG J, et al. A superhydrophilic "nanoglue" for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors[J]. Energy & Environmental Science, 2017, 10(9): 1958-1965.
|
20 |
ZHAO Z Y, XIA K Q, HOU Y, et al. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: From conductive polymers[J]. Chemical Society Reviews, 2021, 50(22): 12702-12743.
|
21 |
HU S, YI J, ZHANG Y J, et al. Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy[J]. Nature Communications, 2020, 11: 2518.
|
22 |
FRITTMANN S, HALKA V, SCHUSTER R. Identification of non-faradaic processes by measurement of the electrochemical Peltier heat during the silver underpotential deposition on Au(111)[J]. Angewandte Chemie International Edition, 2016, 55(15): 4688-4691.
|
23 |
BROUSSE K, PINAUD S, NGUYEN S, et al. Facile and scalable preparation of ruthenium oxide-based flexible micro-supercapacitors[J]. Advanced Energy Materials, 2020, 10(6): doi:10.1002/aenm. 201903136.
|
24 |
GUO W, YU C, ZHAO C T, et al. Boosting charge storage in 1D manganese oxide-carbon composite by phosphorus-assisted structural modification for supercapacitor applications[J]. Energy Storage Materials, 2020, 31: 172-180.
|
25 |
LUO J M, SUN T Q, SUN Y G, et al. A general synthesis strategy for hollow metal oxide microspheres enabled by gel-assisted precipitation[J]. Angewandte Chemie International Edition, 2021, 60(39): 21377-21383.
|
26 |
LUKATSKAYA M R, DUNN B, GOGOTSI Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nature Communications, 2016, 7: 12647.
|
27 |
FLEISCHMANN S, MITCHELL J B, WANG R C, et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials[J]. Chemical Reviews, 2020, 120(14): 6738-6782.
|
28 |
WU S L, CHEN Y T, JIAO T P, et al. An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles[J]. Advanced Energy Materials, 2019, 9(47): doi:10.1002/aenm. 201902915.
|
29 |
GU C, LIU Z, GAO X, et al. Polymerization increasing the capacitive charge storage for better rate performance: A case study of electrodes in aqueous sodium-ion capacitors[J]. Battery Energy, 2022, 1:20220031: doi:10.1002/bte2.20220031.
|
30 |
AMARAL M M, VENâNCIO R, PETERLEVITZ A C, et al. Recent advances on quasi-solid-state electrolytes for supercapacitors[J]. Journal of Energy Chemistry, 2022, 67: 697-717.
|
31 |
WANG H, ZHONG Y, NING J, et al. Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors[J]. Chinese Chemical Letters, 2021, 32(12): 3733-3752.
|
32 |
GUO T Z, ZHOU D, PANG L X, et al. Perspectives on working voltage of aqueous supercapacitors[J]. Small, 2022, 18(16): doi: 10.1002/smll.202106360.
|
33 |
ZHONG C, DENG Y D, HU W B, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539.
|
34 |
LIU X H, TAIWO O O, YIN C Y, et al. Aligned ionogel electrolytes for high-temperature supercapacitors[J]. Advanced Science, 2019, 6(5): doi: 10.1002/advs.201801337.
|
35 |
KIM D W, JUNG S M, JUNG H Y. A super-thermostable, flexible supercapacitor for ultralight and high performance devices[J]. Journal of Materials Chemistry A, 2020, 8(2): 532-542.
|
36 |
RANA H H, PARK J H, DUCROT E, et al. Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices[J]. Energy Storage Materials, 2019, 19: 197-205.
|
37 |
MO F N, LIANG G J, MENG Q Q, et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at 20 ℃[J]. Energy & Environmental Science, 2019, 12(2): 706-715.
|
38 |
RONG Q F, LEI W W, HUANG J, et al. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors[J]. Advanced Energy Materials, 2018, 8(31): doi: 10.1002/aenm. 201801967.
|
39 |
ZHU X Q, JI C C, MENG Q Q, et al. Freeze-tolerant hydrogel electrolyte with high strength for stable operation of flexible zinc-ion hybrid supercapacitors[J]. Small, 2022, 18(16): doi: 10.1002/smll.202200055.
|
40 |
YU H M, ROUELLE N, QIU A D, et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 37977-37985.
|
41 |
HUANG Y, ZHONG M, SHI F K, et al. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte[J]. Angewandte Chemie International Edition, 2017, 56(31): 9141-9145.
|
42 |
LI H L, LV T, SUN H H, et al. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte[J]. Nature Communications, 2019, 10: 536.
|
43 |
WANG Y K, CHEN F, LIU Z X, et al. A highly elastic and reversibly stretchable all-polymer supercapacitor[J]. Angewandte Chemie International Edition, 2019, 58(44): 15707-15711.
|
44 |
LI Z Q, LI M, FAN Q, et al. Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14778-14785.
|
45 |
PAN Q, TONG N J, HE N F, et al. Electrospun mat of poly(vinyl alcohol)/graphene oxide for superior electrolyte performance[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7927-7934.
|
46 |
ZHENG Z, LI M, ZHOU Q J, et al. Polyoxometalate-poly(ethylene oxide) nanocomposites for flexible anhydrous solid-state proton conductors[J]. ACS Applied Nano Materials, 2021, 4(1): 811-819.
|
47 |
GUO W, YU C, LI S F, et al. Toward commercial-level mass-loading electrodes for supercapacitors: Opportunities, challenges and perspectives[J]. Energy & Environmental Science, 2021, 14(2): 576-601.
|
48 |
DOBASHI Y, YAO D, PETEL Y, et al. Piezoionic mechanoreceptors: Force-induced current generation in hydrogels[J]. Science, 2022, 376(6592): 502-507.
|