储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3667-3673.doi: 10.19799/j.cnki.2095-4239.2022.0291

• 储能测试与评价 • 上一篇    下一篇

泡沫金属内嵌石蜡水平蓄器内凝固放热实验

王凡1,2(), 杜昭1,2, 阳康1,2, 王欣怡2, 胡汝坤2, 杨肖虎2,3()   

  1. 1.中国建筑西北设计研究院有限公司,陕西 西安 710061
    2.西安交通大学人居环境与建筑 工程学院
    3.西安交通大学热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2022-05-30 修回日期:2022-06-18 出版日期:2022-11-05 发布日期:2022-11-09
  • 通讯作者: 杨肖虎 E-mail:120273252@qq.com;xiaohuyang@xjtu.edu.cn
  • 作者简介:王凡(1982—),男,高级工程师,研究方向为相变储热强化,E-mail:120273252@qq.com
  • 基金资助:
    国家自然科学基金项目(51976155);中央高校基本科研业务费项目(xtr042019019)

Experimental study on solidification of metal foam composite phase change material in a horizontal heat storage tube

Fan WANG1,2(), Zhao DU1,2, Kang YANG1,2, Xinyi WANG2, Rukun HU2, Xiaohu YANG2,3()   

  1. 1.China Northwest Architecture Design and Research Institute Co. , Ltd, Xi'an 710061, Shaanxi, China
    2.School of Human Settlements and Civil Engineering, Xi'an Jiaotong University
    3.Key Laboratory of Thermal Fluid Science and Engineering of MOE, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2022-05-30 Revised:2022-06-18 Online:2022-11-05 Published:2022-11-09
  • Contact: Xiaohu YANG E-mail:120273252@qq.com;xiaohuyang@xjtu.edu.cn

摘要:

蓄能技术,尤其是蓄热技术,与太阳能光热利用系统集成耦合,可有力解决太阳能间隙性问题,提高太阳能热利用品质和利用效率,为光热利用系统提供稳定的能流输出。为解决工程常见的相变材料热导率低、蓄/放热系统效率不高的关键问题,选取石蜡为蓄热介质,设计了一种水平管内填充泡沫金属的蓄热单元,探究相同蓄热工况(70.0 ℃蓄热)、不同放热流体温度(10.0 ℃、15.0 ℃、20.0 ℃、25.0 ℃、30.0 ℃)下泡沫金属内嵌石蜡的凝固相变行为。通过高清相机拍摄得到凝固相界面的实时位置,通过热电偶测量获得凝固过程中内部温度响应规律。实验结果表明,冷流体温度越低,凝固速率越快;相比较30.0 ℃的放热工况,冷流体为10.0 ℃时石蜡完全凝固时间缩短了52.0%。同一径向距离测点的竖直高度越高,温降越快,其温度响应率也越大;但轴向位置对凝固测点温度变化影响差异不大。以1b测点的温度响应值为基准进行比较,10.0 ℃、15.0 ℃、20.0 ℃、25.0 ℃、30.0 ℃冷却工况下1a点温度响应率分别提高了7.2%、8.8%、10.3%、10.8%、11.7%。本研究有助于推广泡沫金属相变蓄热器的工程应用,为泡沫金属内嵌固液相变材料的结构设计与运行参数选取提供指导和帮助。

关键词: 相变放热, 水平管壳式换热器, 泡沫金属, 换热流体温度, 相界面

Abstract:

Energy storage technology, particularly heat storage technology, can efficiently solve the intermittency issue of solar energy; thus, enhancing the quality and efficiency of the solar energy usage system. Stable energy flow output for the solar energy system is guaranteed upon this integration with the energy storage sections. A horizontal heat storage tank filled with paraffin and metal foam was designed to address the key problem of low thermal conductivity of phase change materials and low efficiency of heat storage/release systems. The solidification phase change behavior of paraffin-embedded metal foam was examined under the same heat storage condition (70.0 ℃) but at different cooling fluid temperatures (10.0 ℃, 15.0 ℃, 20.0 ℃, 25.0 ℃, and 30.0 ℃). The real-time position of the solidification front was captured by an HD camera, and the internal temperature response features during the solidification process were obtained from the measurements. The experimental findings revealed that the lower the temperature of the cold fluid, the faster the solidification rate. The total solidification time of paraffin was shortened by 52.0% when the cold fluid was 10.0 ℃ compared with the exothermic condition of 30.0 ℃. Although the axial position exerted little impact on the temperature development during the solidification process, the higher the vertical height of the measurement point at the same radial distance, the faster the temperature drop and the higher the temperature response rate. The temperature response rate of point 1a under cooling conditions of 10.0 ℃, 15.0 ℃, 20.0 ℃, 25.0 ℃, and 30.0 ℃ increased by 7.2%, 8.8%, 10.3%, 10.8%, and 11.7%, respectively, based on the temperature response value of point 1b. Providing guidance and help for the structural design and operation parameter selection of solid-liquid phase change applications, this study helps popularize the engineering application of heat storage tanks filled with metal foam.

Key words: solidification heat release, horizontal shell-and-tube heat exchanger, metal foam, temperature for heat transfer fluid, phase interface

中图分类号: