| 1 | 徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190. | 
																													
																						|  | XU Z G, ZHAO C Y, JI Y N, et al. State-of-the-art of phase-change thermal storage at middle-low temperature[J]. Energy Storage Science and Technology, 2014, 3(3): 179-190. | 
																													
																						| 2 | 程素雅, 陈宝明, 郭梦雪, 等. 翅片排布方式对矩形腔相变材料熔化的影响[J]. 煤气与热力, 2020, 40(4): 7-12, 15, 41. | 
																													
																						|  | CHENG S Y, CHEN B M, GUO M X, et al. Effect of fin arrangement on melting of phase change material in rectangular cavity[J]. Gas & Heat, 2020, 40(4): 7-12, 15, 41. | 
																													
																						| 3 | HASSAN A K, ABDULATEEF J, MAHDI M S, et al. Experimental evaluation of thermal performance of two different finned latent heat storage systems[J]. Case Studies in Thermal Engineering, 2020, 21: doi: 10.1016/j.csite.2020.100675. | 
																													
																						| 4 | 刘芳, 于航. 泡沫金属/石蜡复合相变材料蓄热过程的数值模拟[J]. 建筑节能, 2010, 38(2): 38-40. | 
																													
																						|  | LIU F, YU H. Numerical simulation of metal foam/paraffin melting process[J]. Building Energy Efficiency, 2010, 38(2): 38-40. | 
																													
																						| 5 | MANI D, SARANPRABHU M K, RAJAN K S. Intensification of thermal energy storage using copper-pentaerythritol nanocomposites for renewable energy utilization[J]. Renewable Energy, 2021, 163: 625-634. | 
																													
																						| 6 | 杨磊, 张小松. 多熔点相变材料堆积蓄热床蓄热性能分析[J]. 化工学报, 2012, 63(4): 1032-1037. | 
																													
																						|  | YANG L, ZHANG X S. Charge performance of packed bed thermal storage unit with phase change material having different melting points[J]. CIESC Journal, 2012, 63(4): 1032-1037. | 
																													
																						| 7 | 李超, 马良栋, 张吉礼, 等. 多相变材料蓄热器蓄热特性数值模拟研究[J]. 建筑热能通风空调, 2015, 34(5): 18-22. | 
																													
																						|  | LI C, MA L D, ZHANG J L, et al. Numerical simulation of thermal energy storage characteristics of multiple phase change materials[J]. Building Energy & Environment, 2015, 34(5): 18-22. | 
																													
																						| 8 | 李赛维, 陶希军, 孙志强. 结构参数对管壳式相变储热单元熔化过程性能提升的影响[J]. 中南大学学报(自然科学版), 2021, 52(1): 8-18. | 
																													
																						|  | LI S W, TAO X J, SUN Z Q. Influence of structural parameters on improvement of melting performance in shell-and-tube latent heat storage unit[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 8-18. | 
																													
																						| 9 | 袁艳平, 吉洪湖, 杜雁霞. 相变储能单元融化过程的传热强化[J]. 南京航空航天大学学报, 2008, 40(2): 151-156. | 
																													
																						|  | YUAN Y P, JI H H, DU Y X. Enhancement of heat transfer for thermal storage cells during melting process[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(2): 151-156. | 
																													
																						| 10 | KUMAR A, SAHA S K. Performance study of a novel funnel shaped shell and tube latent heat thermal energy storage system[J]. Renewable Energy, 2021, 165: 731-747. | 
																													
																						| 11 | 霍宇涛, 陈之琳, 饶中浩. 方腔内相变材料固液相变传热研究[J]. 工程热物理学报, 2020, 41(3): 615-620. | 
																													
																						|  | HUO Y T, CHEN Z L, RAO Z H. Investigation of heat transfer for solid-liquid phase change in a square cavity[J]. Journal of Engineering Thermophysics, 2020, 41(3): 615-620. | 
																													
																						| 12 | QAISER R, KHAN M M, AHMED H F, et al. Performance enhancement of latent energy storage system using effective designs of tubes and shell[J]. Energy Reports, 2022, 8: 3856-3872. | 
																													
																						| 13 | SODHI G S, KUMAR V, MUTHUKUMAR P. Design assessment of a horizontal shell and tube latent heat storage system: Alternative to fin designs[J]. Journal of Energy Storage, 2021, 44: doi: 10.1016/j.est.2021.103282. | 
																													
																						| 14 | 张永学, 王梓熙, 鲁博辉, 等. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. | 
																													
																						|  | ZHANG Y X, WANG Z X, LU B H, et al. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins[J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. | 
																													
																						| 15 | MAO Q J, LI Y. Experimental and numerical investigation on enhancing heat transfer performance of a phase change thermal storage tank[J]. Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101725. | 
																													
																						| 16 | 赵敬德, 樊杰, 杜畅. 肋片长度对相变材料熔化过程影响的数值模拟[J]. 东华大学学报(自然科学版), 2021, 47(4): 93-98. | 
																													
																						|  | ZHAO J D, FAN J, DU C. Numerical simulation of the effect of fin length on melting process of phase change materials[J]. Journal of Donghua University (Natural Science), 2021, 47(4): 93-98. | 
																													
																						| 17 | SEDDEGH S, WANG X L, HENDERSON A D. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials[J]. Applied Thermal Engineering, 2016, 93: 348-358. | 
																													
																						| 18 | SHEN G, WANG X L, CHAN A, et al. Investigation on optimal shell-to-tube radius ratio of a vertical shell-and-tube latent heat energy storage system[J]. Solar Energy, 2020, 211: 732-743. | 
																													
																						| 19 | 周慧琳, 邱燕. 矩形单元蓄热特性及结构优化[J]. 储能科学与技术, 2020, 9(4): 1082-1090. | 
																													
																						|  | ZHOU H L, QIU Y. Heat storage characteristic and structure optimum inrectangular unit[J]. Energy Storage Science and Technology, 2020, 9(4): 1082-1090. |