1 |
KIM H, HONG J, PARK Y U, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015, 25(4): 534-541.
|
2 |
XU Y L, SWAANS E, BASAK S, et al. Reversible Na-ion uptake in Si nanoparticles[J]. Advanced Energy Materials, 2016, 6(2): 1501436.
|
3 |
ZHANG Y F, LI M, HUANG F B, et al. 3D porous Sb-Co nanocomposites as advanced anodes for sodium-ion batteries and potassium-ion batteries[J]. Applied Surface Science, 2020, 499: 143907.
|
4 |
YU Z X, LI X F, YAN B, et al. Rational design of flower-like tin sulfide @ reduced graphene oxide for high performance sodium ion batteries[J]. Materials Research Bulletin, 2017, 96: 516-523.
|
5 |
PARK Y, SHIN D S, WOO S H, et al. Sodium terephthalate as an organic anode material for sodium ion batteries[J]. Advanced Materials, 2012, 24(26): 3562-3567.
|
6 |
KANG H Y, LIU Y C, CAO K Z, et al. Update on anode materials for Na-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(35): 17899-17913.
|
7 |
SANTHOSHKUMAR P, SHAJI N, NANTHAGOPAL M, et al. Multichannel red phosphorus with a nanoporous architecture: A novel anode material for sodium-ion batteries[J]. Journal of Power Sources, 2020, 470: 228459.
|
8 |
QIAN J F, WU X Y, CAO Y L, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie International Edition, 2013, 52(17): 4633-4636.
|
9 |
ZHOU J B, LIU X Y, CAI W L, et al. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries[J]. Advanced Materials, 2017, 29(29): 1700214.
|
10 |
FU Y Q, WEI Q L, ZHANG G X, et al. Batteries: Advanced phosphorus-based materials for lithium/sodium-ion batteries: Recent developments and future perspectives (adv. energy mater. 13/2018)[J]. Advanced Energy Materials, 2018, 8(13): 1870057.
|
11 |
KIM Y, PARK Y, CHOI A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials, 2013, 25(22): 3045-3049.
|
12 |
LI W J, CHOU S L, WANG J Z, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage[J]. Nano Letters, 2013, 13(11): 5480-5484.
|
13 |
SONG J X, YU Z X, GORDIN M L, et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries[J]. Nano Letters, 2014, 14(11): 6329-6335.
|
14 |
SUN J, LEE H W, PASTA M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries[J]. Energy Storage Materials, 2016, 4: 130-136.
|
15 |
BRIDGMAN P W. Two new modifications of phosphorus[J]. Journal of the American Chemical Society, 1914, 36(7): 1344-1363.
|
16 |
AKAHAMA Y, KOBAYASHI M, KAWAMURA H. Raman study of black phosphorus up to 13 GPa[J]. Solid State Communications, 1997, 104(6): 311-315.
|
17 |
LI Y Y, HU Z X, LIN S H, et al. Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain[J]. Advanced Functional Materials, 2017, 27(19): 1600986.
|
18 |
LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.
|
19 |
CHURCHILL H O H, JARILLO-HERRERO P. Phosphorus joins the family[J]. Nature Nanotechnology, 2014, 9(5): 330-331.
|
20 |
YUAN J T, NAJMAEI S, ZHANG Z H, et al. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus[J]. ACS Nano, 2015, 9(1): 555-563.
|
21 |
XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 2014, 5: 4458.
|
22 |
TIOUITCHI G, ALI M A, BENYOUSSEF A, et al. An easy route to synthesize high-quality black phosphorus from amorphous red phosphorus[J]. Materials Letters, 2019, 236: 56-59.
|
23 |
HEMBRAM K P S S, JUNG H, YEO B C, et al. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15041-15046.
|
24 |
XU G L, CHEN Z H, ZHONG G M, et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries[J]. Nano Letters, 2016, 16(6): 3955-3965.
|
25 |
LIU H W, TAO L, ZHANG Y Q, et al. Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36849-36856.
|
26 |
SONG T B, CHEN H, XU Q J, et al. Black phosphorus stabilizing Na2Ti3O7/C each other with an improved electrochemical property for sodium-ion storage[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37163-37171.
|
27 |
XU Y L, PENG B, MULDER F M. A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@Graphene nanocomposite[J]. Advanced Energy Materials, 2018, 8(3): 1701847.
|
28 |
HAGHIGHAT-SHISHAVAN S, NAZARIAN-SAMANI M, NAZARIAN-SAMANI M, et al. Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium[J]. Journal of Materials Chemistry A, 2018, 6(21): 10121-10134.
|
29 |
LI M Y, MURALIDHARAN N, MOYER K, et al. Solvent mediated hybrid 2D materials: Black phosphorus-graphene heterostructured building blocks assembled for sodium ion batteries[J]. Nanoscale, 2018, 10(22): 10443-10449.
|
30 |
RAMIREDDY T, XING T, RAHMAN M M, et al. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(10): 5572-5584.
|
31 |
LIU Y H, LIU Q Z, ZHANG A Y, et al. Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes[J]. ACS Nano, 2018, 12(8): 8323-8329.
|
32 |
ZHANG Y, SUN W P, LUO Z Z, et al. Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries[J]. Nano Energy, 2017, 40: 576-586.
|
33 |
JIN H C, ZHANG T M, CHUANG C H, et al. Synergy of black phosphorus-graphite-polyaniline-based ternary composites for stable high reversible capacity Na-ion battery anodes[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16656-16661.
|
34 |
CALLEGARI D, COLOMBI S, NITTI A, et al. Autonomous self-healing strategy for stable sodium-ion battery: A case study of black phosphorus anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13170-13182.
|
35 |
GUO X, ZHANG W X, ZHANG J Q, et al. Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase[J]. ACS Nano, 2020, 14(3): 3651-3659.
|
36 |
SU J C, XIAO B, JIA Z H. A first principle study of black phosphorene/N-doped graphene heterostructure: Electronic, mechanical and interface properties[J]. Applied Surface Science, 2020, 528: 146962.
|
37 |
ZHANG C R, LIANG T T, DONG H L, et al. Interfacial electron modulation of MoS2/black phosphorus heterostructure toward high-rate and high-energy density half/full sodium-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(17): 6639-6647.
|
38 |
WANG Y W, TIAN W, ZHANG H J, et al. Black phosphorene/NP heterostructure as a novel anode material for Li/Na-ion batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2022, 24(33): 19697-19704.
|