1 |
SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23: 947-958. DOI: 10.1002/adfm.201200691.
|
2 |
KONG J L, PAN G H, SU Z J. The coal as high performance and low cost anodes for sodium-ion batteries[J]. Materials Letters: X, 2022, 13: 100123. DOI: 10.1016/j.mlblux.2022.100123.
|
3 |
WANG J, YAN L, LIU B H, et al. A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage[J]. Chinese Chemical Letters, 2023, 34(4): 107526. DOI: 10.1016/j.cclet.2022.05.040.
|
4 |
FAN C L, ZHANG R S, LUO X H, et al. Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries[J]. Carbon, 2023, 205: 353-364. DOI: 10.1016/j.carbon.2023.01.048.
|
5 |
KAMIYAMA A, KUBOTA K, NAKANO T, et al. High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery[J]. ACS Applied Energy Materials, 2019, 3(1): 135-140. DOI: 10.1021/acsaem.9b01972.
|
6 |
WANG Y X, CHOU S L, LIU H K, et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon, 2013, 57: 202-208. DOI: 10.1016/j.carbon. 2013.01.064.
|
7 |
SUN S, WANG L, XU H. Characteristics and current activation phenomenon of reduced graphite oxide membranes by low temperature thermal treatment for sodium ion battery electrodes[J]. Functional Materials Letters, 2023, 16: 2350002.
|
8 |
XU Z Q, CHEN J C, WU M Q, et al. Effects of different atmosphere on electrochemical performance of hard carbon electrode in sodium ion battery[J]. Electronic Materials Letters, 2019, 15(4): 428-436. DOI: 10.1007/s13391-019-00143-w.
|
9 |
WEI C H, DANG W L, LI M J, et al. Hard-soft carbon nanocomposite prepared by pyrolyzing biomass and coal waste as sodium-ion batteries anode material[J]. Materials Letters, 2023, 330: 133368. DOI: 10.1016/j.matlet.2022.133368.
|
10 |
KUAI J, XIE J, WANG J D, et al. Comparison and optimization of biomass-derived hard carbon as anode materials for sodium-ion batteries[J]. Chemical Physics Letters, 2024, 842: 141214. DOI: 10.1016/j.cplett.2024.141214.
|
11 |
LIU J Y, WANG L Y, HUANG Z Y, et al. Facile synthesis of high quality hard carbon anode from Eucalyptus wood for sodium-ion batteries[J]. Chemical Papers, 2022, 76(12): 7465-7473. DOI: 10. 1007/s11696-022-02397-5.
|
12 |
SUN S, WANG L. Eucommia ulmoides barks-derived anodes for sodium ion battery and method to improve electrochemical performances by modifying defects[J]. Electronic Materials Letters, 2024, 20(4): 474-483. DOI: 10.1007/s13391-024-00486-z.
|
13 |
SENTHIL C, PARK J W, SHAJI N, et al. Biomass seaweed-derived nitrogen self-doped porous carbon anodes for sodium-ion batteries: Insights into the structure and electrochemical activity[J]. Journal of Energy Chemistry, 2022, 64: 286-295. DOI: 10. 1016/j.jechem.2021.04.060.
|
14 |
BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60: 309-319. DOI: 10.1021/ja01269a023.
|
15 |
JAGIELLO J, ANIA C, PARRA J B, et al. Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2[J]. Carbon, 2015, 91: 330-337. DOI: 10.1016/j.carbon.2015.05.004.
|
16 |
JAGIELLO J, OLIVIER J P. Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation[J]. Adsorption, 2013, 19(2): 777-783. DOI: 10.1007/s10450-013-9517-4.
|
17 |
JAGIELLO J, KENVIN J, CELZARD A, et al. Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models[J]. Carbon, 2019, 144: 206-215. DOI: 10.1016/j.carbon.2018.12.028.
|
18 |
JAGIELLO J, OLIVIER J P. 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation[J]. Carbon, 2013, 55: 70-80. DOI: 10.1016/j.carbon.2012.12.011.
|
19 |
ZHOU P, HOU L Q, SONG T, et al. Tuning N-species of graphitic carbon nitride for high-performance anode in sodium ion battery[J]. ACS Applied Energy Materials, 2022, 5(8): 9286-9291. DOI: 10.1021/acsaem.2c01700.
|
20 |
XU X, ZHAO R S, AI W, et al. Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: Toward fast sodium storage by tunable pseudocapacitance[J]. Advanced Materials, 2018, 30(27): 1800658. DOI: 10.1002/adma.2018 00658.
|