1 |
刘博宇, 庞青, 王腾飞, 等. 高镍三元正极材料LiNi0.8Co0.1Mn0.1O2在高压下的研究进展[J]. 储能科学与技术, 2024, 13(11): 3784-3795. DOI: 10.19799/j.cnki.2095-4239.2024.0432.
|
|
LIU B Y, PANG Q, WANG T F, et al. Advancements in the modification of high-voltage Ni-rich ternary cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3784-3795. DOI: 10.19799/j.cnki.2095-4239.2024.0432.
|
2 |
李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252.
|
|
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252.
|
3 |
伍鹏, 郭盼龙, 郭力铭, 等. 高镍正极材料LiNi0.83Co0.12Mn0.05O2双包覆改性及软包锂离子电池应用研究[J]. 材料研究与应用, 2022, 16(5): 812-818. DOI: 10.20038/j.cnki.mra.2022.000514.
|
|
WU P, GUO P L, GUO L M, et al. Dual-coating of LiNi0.83Co0.12Mn0.05O2 with nanosized ZrO2 and B2O3 for lithium-ion pouch cell application[J]. Materials Research and Application, 2022, 16(5): 812-818. DOI: 10.20038/j.cnki.mra.2022.000514.
|
4 |
李军, 黄慧民, 李大光, 等. 锂离子电池纳米阴极材料的研究进展[J]. 材料研究与应用, 2007, 1(3): 165-168. DOI: 10.3969/j.issn.1673-9981.2007.03.002.
|
|
LI J, HUANG H M, LI D G, et al. Research progress of nano-scale cathode materials in lithium ion battery[J]. Materials Research and Application, 2007, 1(3): 165-168. DOI: 10.3969/j.issn.1673-9981.2007.03.002.
|
5 |
FU T J, LU D, YAO Z Q, et al. Advances in modification methods and the future prospects of high-voltage spinel LiNi0.5Mn1.5O4 — A review[J]. Journal of Materials Chemistry A, 2023, 11(26): 13889-13915. DOI: 10.1039/D3TA01777J.
|
6 |
SANTHANAM R, RAMBABU B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material[J]. Journal of Power Sources, 2010, 195(17): 5442-5451. DOI: 10.1016/j.jpowsour. 2010.03.067.
|
7 |
HU M, PANG X L, ZHOU Z. Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242. DOI: 10.1016/j.jpowsour.2013.03.024.
|
8 |
VERSACI D, COLOMBO R, MONTINARO G, et al. Tailoring cathode materials: A comprehensive study on LNMO/LFP blending for next generation lithium-ion batteries[J]. Journal of Power Sources, 2024, 613: 234955. DOI: 10.1016/j.jpowsour. 2024.234955.
|
9 |
GAO C, LIU H P, BI S F, et al. Insights for the new function of N,N-dimethylpyrrolidone in preparation of a high-voltage spinel LiNi0.5Mn1.5O4 cathode[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20014-20023. DOI: 10.1021/acsami.1c01283.
|
10 |
TALYOSEF Y, MARKOVSKY B, SALITRA G, et al. The study of LiNi0.5Mn1.5O4 5 V cathodes for Li-ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 664-669. DOI: 10.1016/j.jpowsour.2005.03.064.
|
11 |
CHANG B, YUN D H, HWANG I, et al. Carrageenan as a sacrificial binder for 5 V LiNi0.5Mn1.5O4 cathodes in lithium-ion batteries[J]. Advanced Materials, 2023, 35(45): e2303787. DOI: 10.1002/adma.202303787.
|
12 |
LIANG G M, WU Z B, DIDIER C, et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping[J]. Angewandte Chemie International Edition, 2020, 59(26): 10594-10602. DOI: 10.1002/anie.202001454.
|
13 |
GONG J J, YAN S P, LANG Y Q, et al. Effect of Cr3+ doping on morphology evolution and electrochemical performance of LiNi0.5Mn1.5O4 material for Li-ion battery[J]. Journal of Alloys and Compounds, 2021, 859: 157885. DOI: 10.1016/j.jallcom. 2020.157885.
|
14 |
WANG J, LIN W Q, WU B H, et al. Syntheses and electrochemical properties of the Na-doped LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2014, 145: 245-253. DOI: 10.1016/j.electacta.2014.07.140.
|
15 |
ZHANG J, CAO L H, LI J P, et al. One thousandth of quaternity slurry additive enables one thousand cycle of 5V LNMO cathode[J]. Energy Storage Materials, 2024, 64: 103060. DOI: 10.1016/j.ensm.2023.103060.
|
16 |
ZI X F, HUANG X, SONG J L, et al. Sr-Y co-doped LiNi0.5Mn1.5O4 cathode material with modified crystal and improved electrochemical performance[J]. Journal of Materials Science, 2023, 58(30): 12271-12287. DOI: 10.1007/s10853-023-08793-w.
|
17 |
OH S W, PARK S H, KIM J H, et al. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution[J]. Journal of Power Sources, 2006, 157(1): 464-470. DOI: 10.1016/j.jpowsour.2005.07.056.
|
18 |
LUO Y Y, CUI Z, WU C X, et al. Enhanced electrochemical performance of a Ti-Cr-doped LiMn1.5Ni0.5O4 cathode material for lithium-ion batteries[J]. ACS Omega, 2023, 8(25): 22721-22731. DOI: 10.1021/acsomega.3c01524.
|
19 |
LIN F C, GUO J B, WANG L Y, et al. Synergistic effect of Mg and Y co-dopants on enhancement of electrochemical properties of LiNi0.5Mn1.5O4 spinel[J]. Electrochimica Acta, 2021, 399: 139433. DOI: 10.1016/j.electacta.2021.139433.
|
21 |
WANG J, NIE P, XU G Y, et al. High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(4): 1704808. DOI: 10.1002/adfm.201704808.
|
22 |
ZHU R N, ZHANG S J, GUO Q X, et al. More than just a protection layer: Inducing chemical interaction between Li3BO3 and LiNi0.5Mn1.5O4 to achieve stable high-rate cycling cathode materials[J]. Electrochimica Acta, 2020, 342: 136074. DOI: 10.1016/j.electacta.2020.136074.
|
23 |
CHENG J F, LI M X, WANG Y T, et al. Effects of Al and Co doping on the structural stability and high temperature cycling performance of LiNi0.5Mn1.5O4 spinel cathode materials[J]. Chinese Journal of Chemical Engineering, 2023, 61: 201-209. DOI: 10.1016/j.cjche.2023.02.020.
|
24 |
CHLADIL L, KUNICKÝ D, KAZDA T, et al. In-situ XRD study of a chromium doped LiNi0.5Mn1.5O4 cathode for Li-ion battery[J]. Journal of Energy Storage, 2021, 41: 102907. DOI: 10.1016/j.est.2021.102907.
|
25 |
LIU M H, HUANG H T, LIN C M, et al. Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries[J]. Electrochimica Acta, 2014, 120: 133-139. DOI: 10.1016/j.electacta.2013.12.065.
|
26 |
MANTHIRAM A, CHEMELEWSKI K, LEE E S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(4): 1339-1350. DOI: 10.1039/C3EE42981D.
|
27 |
CUI X, ZHOU X, LIANG W, et al. Exploring the action mechanism of magnesium in different cations sites for LiNi0.5Mn1.5O4 cathode materials[J]. Materials Today Sustainability, 2022, 17: 100105. DOI: 10.1016/j.mtsust.2021.100105.
|
28 |
LI D J, XIAO B, DAI X Y, et al. One-step in situ construction of Mg0.5Ti2(PO4)3 coating and cation doped modified LiNi0.5Mn1.5O4[J]. Surface and Coatings Technology, 2024, 489: 131080. DOI: 10.1016/j.surfcoat.2024.131080.
|
29 |
WEI A J, LI W, CHANG Q, et al. Effect of Mg2+/F- co-doping on electrochemical performance of LiNi0.5Mn1.5O4 for 5 V lithium-ion batteries[J]. Electrochimica Acta, 2019, 323: 134692. DOI: 10.1016/j.electacta.2019.134692.
|
30 |
STÜBLE P, GEßWEIN H, INDRIS S, et al. On the electrochemical properties of the Fe-Ti doped LNMO material LiNi0.5Mn1.37Fe0.1Ti0.03O3.95[J]. Journal of Materials Chemistry A, 2022, 10(16): 9010-9024. DOI: 10.1039/D2TA00299J.
|
31 |
MAO J, DAI K H, XUAN M J, et al. Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material[J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9116-9124. DOI: 10.1021/acsami.6b00877.
|
32 |
PANG W K, LU C Z, LIU C E, et al. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode[J]. Physical Chemistry Chemical Physics, 2016, 18(26): 17183-17189. DOI: 10.1039/c6cp00947f.
|