1 |
SU W, SONG H, MAO H C, et al. Surface ultrathin and uniform spinel structure induced by boron and fluorine dual doping for enhanced structure stability of Li-rich layered oxides[J]. Chemical Engineering Journal, 2023, 475: 146350. DOI: 10.1016/j.cej. 2023.146350.
|
2 |
JANG H Y, EUM D, CHO J, et al. Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes[J]. Nature Communications, 2024, 15(1): 1288. DOI: 10.1038/s41467-024-45490-x.
|
3 |
ZHENG J M, MYEONG S, CHO W, et al. Li- and Mn-rich cathode materials: Challenges to commercialization[J]. Advanced Energy Materials, 2017, 7(6): 1601284. DOI: 10.1002/aenm.201601284.
|
4 |
YU X Q, LYU Y C, GU L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Advanced Energy Materials, 2014, 4(5): 1300950. DOI: 10.1002/aenm.201300950.
|
5 |
王俊, 张学全, 刘亚飞, 等. 高容量富锂锰基正极材料的研究进展[J]. 储能科学与技术, 2022, 11(10): 3051-3061. DOI: 10.19799/j.cnki. 2095-4239.2022.0480.
|
|
WANG J, ZHANG X Q, LIU Y F, et al. Research progress of high capacity Li-Mn-rich cathode materials[J]. Energy Storage Science and Technology, 2022, 11(10): 3051-3061. DOI: 10.19799/j.cnki. 2095-4239.2022.0480.
|
6 |
周俊飞, 蔡星鹏, 丁浩, 等. 阴离子氧化还原反应对富锂锰基正极材料的影响及其改性策略[J]. 储能科学与技术, 2022, 11(12): 3733-3740. DOI: 10.19799/j.cnki.2095-4239.2022.0382.
|
|
ZHOU J F, CAI X P, DING H, et al. Effect of anionic redox reaction on lithium-rich manganese-based materials and its modification strategy[J]. Energy Storage Science and Technology, 2022, 11(12): 3733-3740. DOI: 10.19799/j.cnki.2095-4239.2022.0382.
|
7 |
ZHANG J L, ZHANG D, WANG Z S, et al. AlF3 coating improves cycle and voltage decay of Li-rich manganese oxides[J]. Journal of Materials Science, 2023, 58(10): 4525-4540. DOI: 10.1007/s10853-022-08038-2.
|
8 |
SHANMUGAM V, NATARAJAN S, LOBO L S, et al. Surface oxygen vacancy engineering and physical protection by in situ carbon coating process of lithium rich layered oxide[J]. Journal of Power Sources, 2021, 515: 230623. DOI: 10.1016/j.jpowsour. 2021.230623.
|
9 |
WANG G R, XU M, FEI L F, et al. Toward high-performance Li-rich Mn-based layered cathodes: A review on surface modifications[J]. Small, 2024, 20(49): e2405659. DOI: 10.1002/smll.202405659.
|
10 |
李雨, 赵慧春, 白莹, 等. 高能量密度层状富锂锰基正极材料的改性研究进展[J]. 储能科学与技术, 2018, 7(3): 394-403. DOI: 10. 12028/j.issn.2095-4239.2018.0010.
|
|
LI Y, ZHAO H C, BAI Y, et al. Progress in the modification of lithium-rich manganese-based layered cathode material[J]. Energy Storage Science and Technology, 2018, 7(3): 394-403. DOI: 10.12028/j.issn.2095-4239.2018.0010.
|
11 |
MA Q X, YANG M Q, MENG J X, et al. Interfacial-engineering-enabled high-performance Li-rich cathodes[J]. Chemical Engineering Journal, 2024, 485: 149546. DOI: 10.1016/j.cej. 2024.149546.
|
12 |
PEI Y, XU C Y, XIAO Y C, et al. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties[J]. Advanced Functional Materials, 2017, 27(7): 1604349. DOI: 10.1002/adfm.201604349.
|
13 |
LEI T X, CAO B, FU W B, et al. A Li-rich layered oxide cathode with remarkable capacity and prolonged cycle life[J]. Chemical Engineering Journal, 2024, 490: 151522. DOI: 10.1016/j.cej. 2024.151522.
|
14 |
MEI J, GAO G Y, CHEN Y Z, et al. Construction of LiNi0.5Mn1.5O4 spinel layer-bearing heterostructural Li-rich layered oxide cathodes with enhanced structural integrity and cycling stability[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(4): 1353-1364. DOI: 10.1021/acssuschemeng.3c04620.
|
15 |
LI B J, WANG Q B, ZHANG Y, et al. Nickel-modified and zirconium-modified Li2MnO3 and applications in lithium-ion battery[J]. International Journal of Electrochemical Science, 2013, 8(4): 5396-5406. DOI: 10.1016/S1452-3981(23)14690-6.
|
16 |
LEE Y J, KIM T H, KWON Y K, et al. Selective formation of the Li4Mn5O12 surface spinel phase in sulfur-doped Li-excess-layered cathode materials for improved cycle life[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 8037-8048. DOI: 10.1021/acssuschemeng.0c02687.
|
17 |
ZHANG X D, SHI J L, LIANG J Y, et al. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating[J]. Advanced Materials, 2018: e1801751. DOI: 10.1002/adma.201801751.
|
18 |
ZHANG J C, GAO R, SUN L M, et al. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 25711-25720. DOI: 10.1039/C6CP03683J.
|
19 |
SUO G Q, ZHANG J Q, LI D, et al. Flexible N doped carbon/bubble-like MoS2 core/sheath framework: Buffering volume expansion for potassium ion batteries[J]. Journal of Colloid and Interface Science, 2020, 566: 427-433. DOI: 10.1016/j.jcis. 2020. 01.113.
|
20 |
YU W H, WANG Y Y, WU A M, et al. Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy[J]. Green Energy & Environment, 2024, 9(1): 138-151. DOI: 10.1016/j.gee.2022.06.001.
|
21 |
ZHANG S, LI S H, ZHANG H Y, et al. Integrating surface structure via triphenyl phosphate treatment to stabilize Li-rich Mn-based cathode materials[J]. Journal of Colloid and Interface Science, 2023, 640: 373-382. DOI: 10.1016/j.jcis.2023.02.054.
|
22 |
YU H J, SO Y G, KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Letters, 2016, 16(5): 2907-2915. DOI: 10.1021/acs.nanolett.5b03933.
|
23 |
AN J, SHI L Y, CHEN G R, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(37): 19738-19744. DOI: 10.1039/C7TA05971J.
|
24 |
WANG F F, JI Y R, CHEN Y H, et al. Rational construction of graphitic carbon nitride composited Li-rich Mn-based oxide cathode materials toward high-performance Li-ion battery[J]. Journal of Colloid and Interface Science, 2023, 652: 577-589. DOI: 10.1016/j.jcis.2023.08.118.
|
25 |
YU Z Z, LU Q, WANG Y Z, et al. Self-compacting engineering to achieve high-performance lithium-rich layered oxides cathode materials[J]. Applied Surface Science, 2023, 619: 156683. DOI: 10.1016/j.apsusc.2023.156683.
|
26 |
XIE H X, CUI J X, YAO Z, et al. Revealing the role of spinel phase on Li-rich layered oxides: A review[J]. Chemical Engineering Journal, 2022, 427: 131978. DOI: 10.1016/j.cej. 2021.131978.
|
27 |
LIU P F, ZHANG H, HE W, et al. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode[J]. Journal of the American Chemical Society, 2019, 141(27): 10876-10882. DOI: 10.1021/jacs.9b04974.
|
28 |
QIU B, ZHANG M H, WU L J, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nature Communications, 2016, 7: 12108. DOI: 10.1038/ncomms12108.
|
29 |
KUBOTA K, KANEKO T, HIRAYAMA M, et al. Direct synthesis of oxygen-deficient Li2MnO3- x for high capacity lithium battery electrodes[J]. Journal of Power Sources, 2012, 216: 249-255. DOI: 10.1016/j.jpowsour.2012.05.061.
|
30 |
ZHAO T L, CHEN S, CHEN R J, et al. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li [Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21711-21720. DOI: 10.1021/am506934j.
|
31 |
FAN Y M, ZHANG W C, ZHAO Y L, et al. Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure[J]. Energy Storage Materials, 2021, 40: 51-71. DOI: 10.1016/j.ensm. 2021.05.005.
|
32 |
NISAR U, MURALIDHARAN N, ESSEHLI R, et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials[J]. Energy Storage Materials, 2021, 38: 309-328. DOI: 10.1016/j.ensm.2021.03.015.
|