储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 965-983.doi: 10.19799/j.cnki.2095-4239.2024.0915
吉帅静1(), 王军伟2, 杜宝帅3, 徐丽4, 楼平5, 管敏渊5, 汤舜2, 程时杰2, 曹元成2(
)
收稿日期:
2024-09-29
修回日期:
2024-10-21
出版日期:
2025-03-28
发布日期:
2025-04-28
通讯作者:
曹元成
E-mail:d202280483@hust.edu.cn;yccao@hust.edu.cn
作者简介:
吉帅静(1996—),女,博士研究生,研究方向为退役动力电池综合利用与再生修复,E-mail:d202280483@hust.edu.cn;
基金资助:
Shuaijing JI1(), Junwei WANG2, Baoshuai DU3, Li XU4, Ping LOU5, Minyuan GUAN5, Shun TAN2, Shijie CHENG2, Yuancheng CAO2(
)
Received:
2024-09-29
Revised:
2024-10-21
Online:
2025-03-28
Published:
2025-04-28
Contact:
Yuancheng CAO
E-mail:d202280483@hust.edu.cn;yccao@hust.edu.cn
摘要:
在锂离子电池于电动汽车及储能领域广泛应用的背景下,磷酸锰锂铁(LiFe x Mn1-x PO4,0<x<1)作为正极材料,因其卓越的高安全性和高工作电压特性而备受瞩目。然而,LiFe x Mn1-x PO4(LFMP)材料存在的导电性不足及循环稳定性较差等问题,成为制约其商业化应用的关键性障碍。针对这些问题,本文深入探讨了LFMPO4性能衰退的根源,包括Mn的Jahn-Teller畸变效应、迟缓的反应动力学以及锰基阴极材料中的歧化反应等核心问题,并深入分析了高温高压条件下产气产热的演变机制,以期揭示其失效机理。为提升LFMP的综合性能,本文总结了多种策略,如离子掺杂与碳包裹技术的结合使用、复合包覆技术以及电解质的改良等。这些策略着重于增强LFMP正极材料的电子导电性和Li+迁移率,稳定其相结构以抑制由Jahn-Teller效应引发的Mn溶解,减小界面应力,并提升材料的热稳定性和安全性。通过实施上述策略,不仅验证了失效机理分析的准确性,还展望了高性能锂离子电池LFMP正极材料的未来发展趋势。结合当前的研究成果,为实现高比容量、稳定的循环性能、出色的倍率性能以及高安全性,可能需要综合运用多种手段,如碳涂层、元素掺杂以及电解质优化等,以期开发出具有高能量密度、长循环寿命和热稳定性的全电池基LFMP正极材料。此外,本文还紧密结合当前的产业化研究进展,综述了不同合成工艺与Mn掺杂比例调控对LFMP材料结构和性能的具体影响,这不仅将推动LFMP基材料在高性能锂离子电池领域的广泛应用,也为其商业化进程奠定了坚实的基础。
中图分类号:
吉帅静, 王军伟, 杜宝帅, 徐丽, 楼平, 管敏渊, 汤舜, 程时杰, 曹元成. LiFe x Mn1–x PO4 (0<x<1)电池稳定性与安全性的提升路径:从失效机制到综合优化策略[J]. 储能科学与技术, 2025, 14(3): 965-983.
Shuaijing JI, Junwei WANG, Baoshuai DU, Li XU, Ping LOU, Minyuan GUAN, Shun TAN, Shijie CHENG, Yuancheng CAO. Improvement paths for the stability and safety of LiFe x Mn1–x PO4 (0 < x < 1) batteries: From failure mechanisms to comprehensive optimization strategies[J]. Energy Storage Science and Technology, 2025, 14(3): 965-983.
图2
LMFP-0、LMFP-/1、LMFP-2和LMFP-3的XRD谱图,LMFP-2中Pbnm相的晶体结构,LMFP-0、LMFP-/1、LMFP-2和LMFP-3的CV曲线,LMFP-0、LMFP-/1、LMFP-2和LMFP-3的循环性能和LMFP-0、LMFP-/1、LMFP-2和LMFP-3的充放电曲线 (a)[58];LFMP-0% Y和LFMP-1% Y的XPS全谱,LFMP-0% Y和LFMP-1% Y中Mn 2p的XPS光谱,LFMP-z%Y(z = 0、0.5、1、2和3)样品在25下以0.1 mV/s的扫描速率测试的循环伏安曲线,Fe2+/Fe3+ 和Mn2+/Mn3+ 氧化还原峰电位差与Y掺杂浓度之间的关系,以及在1 C下的循环性能(b)[60]"
表1
掺杂LFMP材料的总结"
材料 | 合成方法 | 比容量(0.1 C)/ (mAh/g) | 参考文献 |
---|---|---|---|
Li(Mn0.85Fe0.15)0.92Ti0.08PO4/C | solid-state | 99.9% (after 50 cycles at 170 C) | [ |
Li0.97Na0.03Mn0.8Fe0.2PO4/C | solvothermal | 96.65% (after 200 cycles at 85 C) | [ |
Li(Mn0.9Fe0.1)0.95Mg0.05PO4/C | mechano-chemical liquid-phase activation | 98.6% (after 50 cycles at 163 C) | [ |
LiFe0.7Mn0.25Mg0.05PO4/C | solvothermal | 91% (after 200 cycles at 162.6 C) | [ |
LiFe0.47Mn0.5Ca0.03PO4/C | solid-state | 87.84% (after 300 cycles at 160 C) | [ |
LiFe0.5Mn0.49Y0.01PO4/C | solid-state | 86.7% (after 500 cycles at 158.5 C) | [ |
LiFe0.5Mn0.49In0.01PO3.97F0.03 | solvothermal | 100% (after 100 cycles at 170 C) | [ |
LiFe0.39Mg0.01Mn0.6PO4/C | solid-state | 100% (after 100 cycles at 170 C) | [ |
Li(Fe0.5Mn0.5)0.97Mo0.03PO4/C | solvothermal approach | 91.2% (after 200 cycles at 153 C) | [ |
表2
关于LFMP不同的Mn/Fe比总结"
Mn/Fe比 | 含碳量(质量分数)/% | 合成方法 | 比容量/(mAh/g) | 参考文献 |
---|---|---|---|---|
0.1∶0.9 | 0 | solvothermal | 130.6(at 0.1 C) | [ |
0.1∶0.9 | 5 | solid state | 149(at 0.1 C) | [ |
0.15∶0.85 | 3.95 | HEBM | 156.5(at 0.1C) | [ |
0.2∶0.8 | 2-3 | co-precipitation + solid state | 151.1(at 0.1 C) | [ |
0.2∶0.8 | 33 | sol-gel | 160(at 0.1 C) | [ |
0.2∶0.8 | 2.95 | spray dry | 151(at 0.1 C) | |
0.3∶0.7 | 12.2 | HEBM + solid-state reaction | 164(at 0.05 C) | [ |
0.3∶0.7 | 3.2 | hydrothermal | 156.3(at 0.05) | |
0.4∶0.6 | 5 nm | two-step sol-gel method | 150(at 0.1 C) | [ |
0.4∶0.6 | 8.5 | ball-milling | 128(at 0.1 C) | [ |
0.4∶0.6 | 10 | sol-gel | 152(at 0.1 C) | [ |
0.5∶0.5 | 3.16 | ball-milling | 138(at 0.1 C) | [ |
0.6∶0.4 | solid-state | [ | ||
0.6∶0.4 | solid-state | 150(at 0.2 C) | [ | |
0.75∶0.25 | 5 | solid-state | [ | |
0.8∶0.2 | 3 | solvothermal | 133(at 0.05 C) | [ |
0.8∶0.2 | solid-state | 155(at 0.2 C) | [ |
1 | AMINE K, TUKAMOTO H, YASUDA H, et al. Preparation and electrochemical investigation of LiMn2- xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries[J]. Journal of Power Sources, 1997, 68(2): 604-608. DOI:10.1016/S0378-7753(96)02590-6. |
2 | KOPE¢ M, YAMADA A, KOBAYASHI G, et al. Structural and magnetic properties of Lix(MnyFe1 -y)PO4 electrode materials for Li-ion batteries[J]. Journal of Power Sources, 2009, 189(2): 1154-1163. DOI:10.1016/j.jpowsour.2008.12.096. |
3 | KUROSUMI S, HORIBA K, NAGAMURA N, et al. Resonant photoemission spectroscopy of the cathode material LixMn0.5Fe0.5PO4 for lithium-ion battery[J]. Journal of Power Sources, 2013, 226: 42-46. DOI:10.1016/j.jpowsour.2012.10.041. |
4 | MASQUELIER C, CROGUENNEC L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J]. Chemical Reviews, 2013, 113(8): 6552-6591. DOI:10.1021/cr3001862. |
5 | Ⅺ X, LI P, ZHAN Z. Process of preparing LiCoO2 as positive pole material for lithium ion cell: CN1810655-A; CN1319865-C[P]. |
6 | DING X, ZHANG Q, JIANG Z, et al. Anode material LiCoO2 of lithium ion cell and its preparation method: CN1808747-A[P]. |
7 | MOLENDA J, OJCZYK W, K Ś, et al. Diffusional mechanism of deintercalation in LiFe1– yMnyPO4 cathode material[J]. Solid State Ionics, 2006, 177(26/27/28/29/30/31/32): 2617-2624. DOI:10.1016/j.ssi.2006.03.047. |
8 | MOSKON J, PIVKO M, JERMAN I, et al. Cycling stability and degradation mechanism of LiMnPO4 based electrodes[J]. Journal of Power Sources, 2016, 303: 97-108. DOI:10.1016/j.jpowsour. 2015.10.094. |
9 | PAOLELLA A, BERTONI G, DILENA E, et al. Redox centers evolution in phospho-olivine type (LiFe0.5Mn0.5PO4) nanoplatelets with uniform cation distribution[J]. Nano Letters, 2014, 14(3): 1477-1483. DOI:10.1021/nl4046697. |
10 | RAVNSBÆK D B, XIANG K, XING W, et al. Extended solid solutions and coherent transformations in nanoscale olivine cathodes[J]. Nano Letters, 2014, 14(3): 1484-1491. DOI:10.1021/nl404679t. |
11 | CHANG H, LI Y, FANG Z K, et al. Construction of carbon-coated LiMn0.5Fe0.5PO4@Li0.33La0.56TiO3 nanorod composites for high-performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 33102-33111. DOI:10.1021/acsami. 1c08373. |
12 | CHEN W Y, XU D H, CHEN Y C, et al. In situ electrospinning synthesis of N-doped C nanofibers with uniform embedding of Mn doped MFe1- xMnxPO4 (M = Li, Na) as a high performance cathode for lithium/sodium-ion batteries[J]. Advanced Materials Interfaces, 2020, 7(19): 2000684. DOI:10.1002/admi.202000684. |
13 | CUI X L, TUO K Y, DONG H, et al. Modification of phosphorus-doped carbon coating enhances the electrochemical performance of LiFe0.8Mn0.2PO4 cathode material[J]. Journal of Alloys and Compounds, 2021, 885: 160946. DOI:10.1016/j.jallcom.2021.160946. |
14 | NORBERG N S, KOSTECKI R. The degradation mechanism of a composite LiMnPO4 cathode[J]. Journal of the Electrochemical Society, 2012, 159(9): A1431-A1434. DOI:10.1149/2.018209jes. |
15 | NEDOSEYKINA T, KIM M G, PARK S A, et al. In situ X-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material[J]. Electrochimica Acta, 2010, 55(28): 8876-8882. |
16 | DING D, MAEYOSHI Y, KUBOTA M, et al. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries[J]. Journal of Power Sources, 2020, 449: 227553. DOI:10.1016/j.jpowsour. 2019.227553. |
17 | LI X, LIU J D, HE J, et al. Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li||NCM811 cells with efficient anode/cathode electrolyte interphases[J]. Advanced Functional Materials, 2021, 31(37): 2104395. DOI:10.1002/adfm.202104395. |
18 | HOU Y K, PAN G L, SUN Y Y, et al. LiMn0.8Fe0.2PO4/carbon Nanospheres@Graphene nanoribbons prepared by the biomineralization process as the cathode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16500-16510. DOI:10.1021/acsami.8b02736. |
19 | ZHU Y, CASSELMAN M D, LI Y, et al. Perfluoroalkyl-substituted ethylene carbonates: Novel electrolyte additives for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2014, 246: 184-191. DOI:10.1016/j.jpowsour.2013.07.070. |
20 | ZHAO D Q, LI X F, TANG F J, et al. Compatibility between lithium bis(oxalate)borate-based electrolytes and a LiFe0.6Mn0.4PO4/C cathode for lithium-ion batteries[J]. Energy Technology, 2017, 5(3): 406-413. DOI:10.1002/ente.201600307. |
21 | ZHANG Y Q, MA Q, WANG S L, et al. Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes[J]. ACS Nano, 2018, 12(5): 4824-4834. DOI:10.1021/acsnano.8b01549. |
22 | ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454. DOI:10.1016/j.nanoen.2016.09.002. |
23 | YANG C C, HUNG Y W, LUE S J. Improved electrochemical properties of LiFe0.5Mn0.5PO4/C composite materials via a surface coating process[J]. Journal of Power Sources, 2016, 325: 565-574. DOI:10.1016/j.jpowsour.2016.06.084. |
24 | DEKUN Q. Guoxuan Gaoke released Qichen battery without ternary materials can last 1000 km[N/OL]. May 21, 2023. https://company.cnstock.com/company/scp_gsxw/202305/5064140.htm |
25 | YU X F, LI Q W, LIU Q, et al. Rheological phase reaction method synthesis and characterizations of xLiMn0.5Fe0.5PO4– yLi3V2(PO4)3/C composites as cathode materials for lithium ion batteries[J]. Journal of Materials Research, 2020, 35(1): 2-11. DOI:10.1557/jmr.2019.326. |
26 | YU H, HAN J S, HWANG G C, et al. Optimization of high potential cathode materials and lithium conducting hybrid solid electrolyte for high-voltage all-solid-state batteries[J]. Electrochimica Acta, 2021, 365: 137349. DOI:10.1016/j.electacta. 2020.137349. |
27 | YI H H, HU C L, FANG H S, et al. Optimized electrochemical performance of LiMn0.9Fe0.1- xMgxPO4/C for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(11): 4052-4057. DOI:10.1016/j.electacta.2011.01.121. |
28 | STARKE B, SEIDLMAYER S, SCHULZ M, et al. Gas evolution and capacity fading in LiFexMn1– xPO4/graphite cells studied by neutron imaging and neutron induced prompt gamma activation analysis[J]. Journal of the Electrochemical Society, 2017, 164(14): A3943-A3948. DOI:10.1149/2.0011802jes. |
29 | JALKANEN K, VUORILEHTO K. Entropy change characteristics of LiMn0.67Fe0.33PO4 and Li4Ti5O12 electrode materials[J]. Journal of Power Sources, 2015, 273: 351-359. DOI:10.1016/j.jpowsour. 2014.09.091. |
30 | CHEN L, YUAN Y Q, FENG X, et al. Enhanced electrochemical properties of LiFe1- xMnxPO4/C composites synthesized from FePO4·2H2O nanocrystallites[J]. Journal of Power Sources, 2012, 214: 344-350. DOI:10.1016/j.jpowsour.2012.04.089. |
31 | HE W, GUO W B, WU H L, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries[J]. Advanced Materials, 2021, 33(50): 2005937. DOI:10.1002/adma.202005937. |
32 | ELDESOKY A, KOWALSKI N, NI H Q, et al. Studying the impact of electrolyte, Li excess, NMC blending, and cycling conditions on the lifetime and degradation of LMO/AG cells using UHPC cycling, XRF, and isothermal microcalorimetry[J]. Journal of the Electrochemical Society, 2023, 170(9): 090530. DOI:10.1149/1945-7111/acf95e. |
33 | LIN X K, PARK J, LIU L, et al. A comprehensive capacity fade model and analysis for Li-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(10): A1701-A1710. DOI:10.1149/2.040310jes. |
34 | KIM J K, VIJAYA R, ZHU L K, et al. Improving electrochemical properties of porous iron substituted lithium manganese phosphate in additive addition electrolyte[J]. Journal of Power Sources, 2015, 275: 106-110. |
35 | WI S, PARK J, LEE S, et al. Synchrotron-based X-ray absorption spectroscopy for the electronic structure of LixMn0.8Fe0.2PO4 mesocrystal in Li+ batteries[J]. Nano Energy, 2017, 31: 495-503. DOI:10.1016/j.nanoen.2016.11.044. |
36 | WI S, PARK J, LEE S, et al. Insights on the delithiation/lithiation reactions of LixMn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques[J]. Nano Energy, 2017, 39: 371-379. DOI:10.1016/j.nanoen.2017.07.016. |
37 | NEDOSEYKINA T, KIM M G, PARK S A, et al. In situ X-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material[J]. Electrochimica Acta, 2010, 55(28): 8876-8882. DOI:10.1016/j.electacta.2010.08.037. |
38 | OJCZYK W, MARZEC J, DYGAS J, et al. Structural and transport properties of LiFe0.45Mn0.55PO4 as a cathode material in Li-ion batteries[J]. Materials Science-Poland, 2006, 24(1): 103-113. |
39 | NIU J J, KUSHIMA A, QIAN X F, et al. In situ observation of random solid solution zone in LiFePO4 electrode[J]. Nano Letters, 2014, 14(7): 4005-4010. DOI:10.1021/nl501415b. |
40 | ZHONG K F, CAI X H, WANG M. The mechanism of easier desorption of Fe atoms on the (100) surface of LiFePO4 and FePO4[J]. Chemical Physics, 2023, 570: 111891. DOI:10.1016/j.chemphys.2023.111891. |
41 | ZSOLDOS E S, ELDESOKY A, LOGAN E, et al. LiMn2O4/graphite cell degradation mechanisms studying how Mn deposition accelerates lithiated graphite reactivity with electrolyte[J]. Journal of the Electrochemical Society, 2024, 171(7): 070504. DOI:10.1149/1945-7111/ad5910. |
42 | LUO C, JIANG Y, ZHANG X X, et al. Misfit strains inducing voltage decay in LiMnyFe1- yPO4/C[J]. Journal of Energy Chemistry, 2022, 68: 206-212. DOI:10.1016/j.jechem. 2021.11.007. |
43 | LIU Y T, SUN Y, WEN X, et al. Li2ZrO3 coated LiFe0.4Mn0.6PO4/C with enhanced cycling performance at elevated temperature for lithium-ion batteries[J]. Journal of Power Sources, 2024, 613: 234938. DOI:10.1016/j.jpowsour.2024.234938. |
44 | LESLIE K, HARLOW J, RATHORE D, et al. Correlating Mn dissolution and capacity fade in LiMn0.8Fe0.2PO4/graphite cells during cycling and storage at elevated temperature[J]. Journal of the Electrochemical Society, 2024, 171(4): 040520. DOI:10.1149/1945-7111/ad3b77. |
45 | CHO I H, KIM S S, SHIN S C, et al. Effect of SEI on capacity losses of spinel lithium manganese oxide/graphite batteries stored at 60℃[J]. Electrochemical and Solid-State Letters, 2010, 13(11): A168. DOI:10.1149/1.3481711. |
46 | LIU S, FANG H S, DAI E R, et al. Effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C composite cathode for lithium ion batteries[J]. Electrochimica Acta, 2014, 116: 97-102. DOI:10.1016/j.electacta.2013.11.052. |
47 | KOSOVA N V, PODGORNOVA O A, GUTAKOVSKII A K. Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods[J]. Journal of Alloys and Compounds, 2018, 742: 454-465. DOI:10.1016/j.jallcom. 2018.01.242. |
48 | HUANG Q Y, WU Z, SU J, et al. Synthesis and electrochemical performance of Ti-Fe Co-doped LiMnPO4/C as cathode material for lithium-ion batteries[J]. Ceramics International, 2016, 42(9): 11348-11354. DOI:10.1016/j.ceramint.2016.04.057. |
49 | OUYANG C Y, SHI S Q, WANG Z X, et al. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations[J]. Journal of Physics: Condensed Matter, 2004, 16(13): 2265-2272. DOI:10.1088/0953-8984/16/13/007. |
50 | ZHANG K, LI Z X, LI X, et al. Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries[J]. Rare Metals, 2023, 42(3): 740-750. DOI:10.1007/s12598-022-02107-w. |
51 | ZHANG L S, GAO X L, LIU X H, et al. CHAIN: Unlocking informatics-aided design of Li metal anode from materials to applications[J]. Rare Metals, 2022, 41(5): 1477-1489. DOI:10.1007/s12598-021-01925-8. |
52 | LI Z F, REN X, TIAN W C, et al. LiMn0.6Fe0.4PO4/CA cathode materials with carbon aerogel as additive synthesized by wet ball-milling combined with spray drying[J]. Journal of the Electrochemical Society, 2020, 167(9): 090516. DOI:10.1149/1945-7111/ab819e. |
53 | OH S M, MYUNG P S, PARK J B, et al. Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2012, 51(8): 1853-1856. DOI:10.1002/anie.201107394. |
54 | QI S H, WANG H P, HE J, et al. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries[J]. Science Bulletin, 2021, 66(7): 685-693. DOI:10.1016/j.scib. 2020.09.018. |
55 | QIAO Y, ZHAO H P, SHEN Y L, et al. Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives[J]. EcoMat, 2023, 5(4): e12321. DOI:10.1002/eom2.12321. |
56 | SU P P, ZHANG H T, YANG L P, et al. Effects of conductive additives on the percolation networks and rheological properties of LiMn0.7Fe0.3PO4 suspensions for lithium slurry battery[J]. Chemical Engineering Journal, 2022, 433: 133203. DOI:10.1016/j.cej.2021.133203. |
57 | LV Z, LI M L, LIN J X, et al. First-principles study on LiMn0.5Fe0.5PO4 doping to decrease the Jahn-Teller effect[J]. Journal of Solid State Electrochemistry, 2024, 28(2): 577-587. DOI:10.1007/s10008-023-05705-5. |
58 | HU H, LI H, LEI Y, et al. Mg-doped LiMn0.8Fe0.2PO4/C nano-plate as a high-performance cathode material for lithium-ion batteries[J]. Journal of Energy Storage, 2023, 73: 109006. DOI:10.1016/j.est.2023.109006. |
59 | LIU Y Y, CHANG C K, ZHENG J N. Revealing the role of Mg doping in LiFe0.39Mg0.01Mn0.6PO4/C cathode: Enhanced electrochemical performance from improved electrical conductivity and promoted lithium diffusion kinetics[J]. Journal of Energy Storage, 2024, 91: 112108. DOI:10.1016/j.est. 2024.112108. |
60 | PENG J, LI Z, YOU Y, et al. Contribution of Ti-doping to the cyclic stability of LiFe0.6Mn0.4PO4/C[J]. Industrial & Engineering Chemistry Research, 2024, 63(18): 8228-8238. DOI:10.1021/acs.iecr.4c00307. |
61 | ZHENG J W, YANG J W, WU J M, et al. Y3+ doping and electrochemical properties of LiFe0.5Mn0.5PO4@C cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 960: 170610. DOI:10.1016/j.jallcom. 2023.170610. |
62 | SIN B C, SINGH L, LEE J, et al. Electrochemical performance of hybrid-structured LiFe(PO4)0.5(BO3)0.5 cathode material for Li-ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 823: 155-160. DOI:10.1016/j.jelechem.2018.06.010. |
63 | LI Z P, ZHU J H, XU M W, et al. Achieving long-lasting and high-capacity LiFe0.5Mn0.5PO4 cathodes with a synergistic F/In dual doping strategy[J]. New Journal of Chemistry, 2024, 48(15): 6857-6863. DOI:10.1039/D4NJ00255E. |
64 | LI R, FAN C L, ZHANG W H, et al. Structure and performance of Na+ and Fe2+ Co-doped Li1– xNaxMn0.8Fe0.2PO4/C nanocapsule synthesized by a simple solvothermal method for lithium ion batteries[J]. Ceramics International, 2019, 45(8): 10501-10510. DOI:10.1016/j.ceramint.2019.02.112. |
65 | DUAN J G, HU G R, CAO Y B, et al. Synthesis of high-performance Fe-Mg-co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique[J]. Ionics, 2016, 22(5): 609-619. DOI:10.1007/s11581-015-1582-0. |
66 | XIA K, LIANG R, LUO Y, et al. Solid-state preparation and electrochemical properties of Mg2+-doped LiFe0.7Mn0.3PO4/C as cathode material for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2022, 17(12): 221273. DOI:10.20964/2022.12.72. |
67 | LIU W F, LIU X C, HAO R, et al. Contribution of calcium ion doping to the rate property for LiFe0.5Mn0.5PO4/C[J]. Journal of Electroanalytical Chemistry, 2023, 929: 117117. DOI:10.1016/j.jelechem.2022.117117. |
68 | KIM D, LEE S, CHOI W. Boosting both electronic and ionic conductivities via incorporation of molybdenum for LiFe0.5Mn0.5PO4 cathode in lithium-ion batteries[J]. Journal of Alloys and Compounds, 2024, 989: 174396. DOI:10.1016/j.jallcom. 2024. 174396. |
69 | FAN R Z, FAN C L, HU Z, et al. Construction of high performance N-doped carbon coated LiMn0.8Fe0.2PO4 nanocrystal cathode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 876: 160090. DOI:10.1016/j.jallcom.2021.160090. |
70 | LI J L, WANG Y, WU J H, et al. CNT-embedded LiMn0.8Fe0.2PO4/C microsphere cathode with high rate capability and cycling stability for lithium ion batteries[J]. Journal of Alloys and Compounds, 2018, 731: 864-872. DOI:10.1016/j.jallcom.2017.09.338. |
71 | PODGORNOVA O A, VOLFKOVICH Y M, SOSENKIN V E, et al. Increasing the efficiency of carbon coating on olivine-structured cathodes by choosing a carbon precursor[J]. Journal of Electroanalytical Chemistry, 2022, 907: 116059. DOI:10.1016/j.jelechem.2022.116059. |
72 | SONG Z Y, CHEN S L, DU S, et al. Construction of high-performance LiMn0.8Fe0.2PO4/C cathode by using quinoline soluble substance from coal pitch as carbon source for lithium ion batteries[J]. Journal of Alloys and Compounds, 2022, 927: 166921. DOI:10.1016/j.jallcom.2022.166921. |
73 | THAHEEM I, KIM K J, LEE J J, et al. High performance Mn1.3Co1.3Cu0.4O4 spinel based composite cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(34): 19696-19703. DOI:10.1039/C9TA07069A. |
74 | YU M, LI J, NING X H. Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon[J]. Electrochimica Acta, 2021, 368: 137597. DOI:10.1016/j.electacta.2020.137597. |
75 | LIANG Y L, CHEN S L, FAN C L, et al. High-performance LiMn0.8Fe0.2PO4/C cathode prepared by using the toluene-soluble component of pitch as a carbon source[J]. International Journal of Energy Research, 2021, 45(13): 19103-19119. DOI:10.1002/er.7092. |
76 | MARTHA S K, HAIK O, ZINIGRAD E, et al. On the thermal stability of olivine cathode materials for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(10): A1115. DOI:10.1149/1.3622849. |
77 | YAO X, LI D, GUO L, et al. Carbon-coated LiMn0.8Fe0.2PO4 cathodes for high-rate lithium-ion batteries[J]. Advanced Composites and Hybrid Materials, 2024, 7(2): 63. DOI:10.1007/s42114-024-00870-1. |
78 | LIU X C, OUYANG B X, HAO D R, et al. Li2SiO3 modification of C/LiFe0.5Mn0.5PO4 for high performance lithium-ion batteries[J]. ChemElectroChem, 2022, 9(16): e202200609. DOI:10.1002/celc. 202200609. |
79 | TUO K Y, MAO L P, DING H, et al. Boron and phosphorus dual-doped carbon coating improves electrochemical performances of LiFe0.8Mn0.2PO4 cathode materials[J]. ACS Applied Energy Materials, 2021, 4(8): 8003-8015. DOI:10.1021/acsaem.1c01318. |
80 | KIM J K, VIJAYA R, ZHU L K, et al. Improving electrochemical properties of porous iron substituted lithium manganese phosphate in additive addition electrolyte[J]. Journal of Power Sources, 2015, 275: 106-110. DOI:10.1016/j.jpowsour. 2014. 11.028. |
81 | ADACHI P G, IMANAKA D N, AONO D H. Fast Li+ conducting ceramic electrolytes[J]. Advanced Materials, 1996, 8(2): 127-135. DOI:10.1002/adma.19960080205. |
82 | CHENG L, WU C H, JARRY A, et al. Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(32): 17649-17655. DOI:10.1021/acsami.5b02528. |
83 | DENG Z, RADHAKRISHNAN B, ONG S P. Rational composition optimization of the lithium-rich Li3OCl1– xBrx anti-perovskite superionic conductors[J]. Chemistry of Materials, 2015, 27(10): 3749-3755. DOI:10.1021/acs.chemmater.5b00988. |
84 | DI LECCE D, FASCIANI C, SCROSATI B, et al. A gel-polymer Sn-C/LiMn0.5Fe0.5PO4 battery using a fluorine-free salt[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21198-21207. DOI:10.1021/acsami.5b05179. |
85 | YAO M, ZHANG H T, XING C X, et al. Rational design of biomimetic ant-nest solid polymer electrolyte for high-voltage Li-metal battery with robust mechanical and electrochemical performance[J]. Energy Storage Materials, 2021, 41: 51-60. DOI:10.1016/j.ensm.2021.05.049. |
86 | GOODENOUGH J B, SINGH P. Review—Solid electrolytes in rechargeable electrochemical cells[J]. Journal of the Electrochemical Society, 2015, 162(14): A2387-A2392. DOI:10.1149/2.0021514jes. |
87 | KNAUTH P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14/15/16): 911-916. DOI:10.1016/j.ssi.2009.03.022. |
88 | ZHOU X, DENG Y, WAN L, et al. A surfactant-assisted synthesis route for scalable preparation of high performance of LiFe0.15Mn0.85PO4/C cathode using bimetallic precursor[J]. Journal of Power Sources, 2014, 265(1): 223-230. DOI:10.1016/j.jpowsour.2014.04.049. |
89 | GUO X P, WANG M, HUANG X L, et al. Direct evidence of antisite defects in LiFe0.5Mn0.5PO4 via atomic-level HAADF-EELS[J]. Journal of Materials Chemistry A, 2013, 1(31): 8775. DOI:10.1039/c3ta11564j. |
90 | WANG K, HOU M Y, YUAN S Y, et al. An additional discharge plateau of Mn3+ in LiFe0.5Mn0.5PO4 at high current rates[J]. Electrochemistry Communications, 2015, 55: 6-9. DOI:10.1016/j.elecom.2015.03.004. |
91 | SHAPOVALOV V V, GUDA A A, KOSOVA N V, et al. Laboratory operando Fe and Mn K-edges XANES and Mössbauer studies of the LiFe0.5Mn0.5PO4 cathode material[J]. Radiation Physics and Chemistry, 2020, 175: 108065. DOI:10.1016/j.radphyschem. 2018.11.019. |
92 | KIM M S, JEGAL J P, ROH K C, et al. Synthesis of LiMn0.75Fe0.25PO4/C microspheres using a microwave-assisted process with a complexing agent for high-rate lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(27): 10607-10613. DOI:10.1039/C4TA01197J. |
93 | KOSOVA N V, PODGORNOVA O A. The influence of synthesis method on structure, morphology and electrochemical properties of the LiFe0.5Mn0.5PO4 cathode material[J]. Materials Today: Proceedings, 2018, 5(11): 22806-22810. DOI:10.1016/j.matpr. 2018.07.094. |
94 | OH S M, MYUNG S T, CHOI Y S, et al. Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries[J]. Journal of Materials Chemistry, 2011, 21(48): 19368-19374. DOI:10.1039/C1JM13889H. |
95 | LIU W, GAO P, MI Y Y, et al. Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating-spray drying method for high rate lithium ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(7): 2411-2417. DOI:10.1039/C2TA00939K. |
96 | YI Z H, MU Z J, YANG X, et al. A facile and reliable route to the synthesis of high-performance LiFe2/3Mn1/3PO4@C/graphene for lithium-ion power batteries[J]. Materials Chemistry and Physics, 2024, 327: 129799. DOI:10.1016/j.matchemphys.2024.129799. |
97 | YAN S Y, WANG C Y, GU R M, et al. Synergetic Fe substitution and carbon connection in LiMn1- x FexPO4/C cathode materials for enhanced electrochemical performances[J]. Journal of Alloys and Compounds, 2015, 628: 471-479. DOI:10.1016/j.jallcom. 2014.12.182. |
98 | RAVNSBAEK D B, XIANG K, XING W, et al. Engineering the transformation strain in LiMnyFe1– yPO4 olivines for ultrahigh rate battery cathodes[J]. Nano Letters, 2016, 16(4): 2375-2398. |
99 | YAMADA A, KUDO Y, LIU K Y. Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4 (0≤x≤1)[J]. Journal of the Electrochemical Society, 2001, 148(7): A747. DOI:10.1149/1.1375167. |
100 | CHEN L, YUAN Y Q, FENG X, et al. Enhanced electrochemical properties of LiFe1- xMnxPO4/C composites synthesized from FePO4·2H2O nanocrystallites[J]. Journal of Power Sources, 2012, 214: 344-350. DOI:10.1016/j.jpowsour.2012.04.089. |
101 | ARAVINDAN V, GNANARAJ J, LEE Y S, et al. LiMnPO4-A next generation cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3518-3539. DOI:10.1039/C2TA01393B. |
102 | YAMADA A, CHUNG S C. Crystal chemistry of the olivine-type Li(MnyFe1– y)PO4 and (MnyFe1– y)PO4 as possible 4 V cathode materials for lithium batteries[J]. Journal of the Electrochemical Society, 2001, 148(8): A960. DOI:10.1149/1.1385377. |
103 | SARAVANAN K, RAMAR V, BALAYA P, et al. Li(MnxFe1- x)PO4/C (x = 0.5, 0.75 and 1) nanoplates for lithium storage application[J]. Journal of Materials Chemistry, 2011, 21(38): 14925-14935. DOI:10.1039/C1JM11541C. |
104 | BHUVANESWARI D, GANGULIBABU, DOH C H, et al. Role of iron dopant and carbon additive in improving the ionic transport and electrochemical properties of LiFexMn1– xPO4 (x=0.25 and 0.75) solid solutions[J]. International Journal of Electrochemical Science, 2011, 6(9): 3714-3728. DOI:10.1016/S1452-3981(23)18283-6. |
105 | WANG Z H, YUAN L X, ZHANG W X, et al. LiFe0.8Mn0.2PO4/C cathode material with high energy density for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2012, 532: 25-30. DOI:10.1016/j.jallcom.2012.04.008. |
106 | MOLENDA J, OJCZYK W, MARZEC J. Electrical conductivity and reaction with lithium of LiFe1- yMnyPO4 olivine-type cathode materials[J]. Journal of Power Sources, 2007, 174(2): 689-694. DOI:10.1016/j.jpowsour.2007.06.238. |
107 | WANG D Y, OUYANG C Y, DRÉZEN T, et al. Improving the electrochemical activity of LiMnPO4 via Mn-site substitution[J]. Journal of the Electrochemical Society, 2010, 157(2): A225. DOI:10.1149/1.3271112. |
108 | YE F P, WANG L, HE X M, et al. Solvothermal synthesis of nano LiMn0.9Fe0.1PO4: Reaction mechanism and electrochemical properties[J]. Journal of Power Sources, 2014, 253: 143-149. DOI:10.1016/j.jpowsour.2013.12.010. |
109 | ZHOU X, DENG Y F, WAN L N, et al. A surfactant-assisted synthesis route for scalable preparation of high performance of LiFe0.15Mn0.85PO4/C cathode using bimetallic precursor[J]. Journal of Power Sources, 2014, 265: 223-230. DOI:10.1016/j.jpowsour. 2014.04.049. |
110 | DU K, ZHANG L H, CAO Y B, et al. Synthesis of LiMn0.8Fe0.2PO4/C by co-precipitation method and its electrochemical performances as a cathode material for lithium-ion batteries[J]. Materials Chemistry and Physics, 2012, 136(2/3): 925-929. DOI:10.1016/j.matchemphys.2012.08.021. |
111 | LI B Z, WANG Y, XUE L, et al. Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery[J]. Journal of Power Sources, 2013, 232: 12-16. DOI:10.1016/j.jpowsour.2013.01.019. |
112 | DING B, XIAO P F, JI G, et al. High-performance lithium-ion cathode LiMn0.7Fe0.3PO4/C and the mechanism of performance enhancements through Fe substitution[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 12120-12126. DOI:10.1021/am403991f. |
113 | LIU J L, LIAO W J, YU A S. Electrochemical performance and stability of LiMn0.6Fe0.4PO4/C composite[J]. Journal of Alloys and Compounds, 2014, 587: 133-137. DOI:10.1016/j.jallcom. 2013.10.154. |
114 | HUANG Y P, LI X, CHEN Z, et al. Effect of sintering temperature on electrochemical performance of LiFe0·4Mn0·6PO4/C cathode materials[J]. Materials Research Innovations, 2014, 18(sup4): S4-2-S4-5. DOI:10.1179/1432891714Z.000000000664. |
115 | ZHONG Y J, LI J T, WU Z G, et al. LiMn0.5Fe0.5PO4 solid solution materials synthesized by rheological phase reaction and their excellent electrochemical performances as cathode of lithium ion battery[J]. Journal of Power Sources, 2013, 234: 217-222. DOI:10.1016/j.jpowsour.2013.01.184. |
116 | BRAMNIK N N, BRAMNIK K G, NIKOLOWSKI K, et al. Synchrotron diffraction study of lithium extraction from LiMn0.6Fe0.4PO4[J]. Electrochemical and Solid-State Letters, 2005, 8(8): A379. DOI:10.1149/1.1940487. |
117 | RAVNSBÆK D B, XIANG K, XING W T, et al. Engineering the transformation strain in LiMnyFe1– yPO4 olivines for ultrahigh rate battery cathodes[J]. Nano Letters, 2016, 16(4): 2375-2380. DOI:10.1021/acs.nanolett.5b05146. |
118 | PEREA A, SOUGRATI M T, IONICA-BOUSQUET C M, et al. operando 57Fe Mössbauer and XRD investigation of LixMnyFe1- yPO4/C composites (y = 0; 0.25)[J]. RSC Advances, 2012, 2(5): 2080-2086. DOI:10.1039/C1RA00256B. |
119 | WI S, PARK J, LEE S, et al. Insights on the delithiation/lithiation reactions of LixMn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques[J]. Nano Energy, 2017, 39: 371-379. DOI:10.1016/j.nanoen.2017.07.016. |
120 | Ravnsbæk D B, Xiang K, Xing W T, et al. Engineering the transformation strain in LiMnyFe1– yPO4 olivines for ultrahigh rate battery cathodes[J]. Nano Letters, 2016, 16(4): 2375-2380. |
121 | WANG H L, YANG Y, LIANG Y Y, et al. LiMn1- xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries[J]. Angewandte Chemie International Edition, 2011, 50(32): 7364-7368. DOI:10.1002/anie.201103163. |
[1] | 周德清, 蔡艺嘉, 张子芩, 周丽萍, 胡思江, 黄有国, 王红强, 李庆余. MoS2 尖晶石包覆富锂锰基正极材料的电化学性能[J]. 储能科学与技术, 2025, 14(3): 1087-1096. |
[2] | 郝定邦, 栗永利. 高倍率和长循环稳定性钠离子电池正极材料Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05 @CuO的性能研究[J]. 储能科学与技术, 2024, 13(8): 2489-2498. |
[3] | 陈桢, 李贤傲, 徐艺维, 刘欣, 申泽骧, 陈明华. LATP、LAGP固态电解质材料合成改性路线研究现状及展望[J]. 储能科学与技术, 2024, 13(11): 3826-3855. |
[4] | 赵争光, 陈振营, 翟光群, 张希, 庄小东. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. |
[5] | 郝增辉, 刘训良, 孟缘, 孟楠, 温治. 电极界面微观结构对固态锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(7): 2095-2104. |
[6] | 王绍聪, 李伟, 黄瑞琴, 郭艺飞, 刘峥. 锰基钠离子电池正极材料Jahn-Teller效应抑制方法进展[J]. 储能科学与技术, 2023, 12(1): 139-149. |
[7] | 熊小琳, 岳金明, 周安行, 索鎏敏, 胡勇胜, 李泓, 黄学杰. 尖晶石锰酸锂正极在Water-in-salt电解液中的电化学性能[J]. 储能科学与技术, 2020, 9(2): 375-384. |
[8] | 孙兴伟, 王龙龙, 姜丰, 马君, 周新红, 崔光磊. 固态聚合物锂电池失效机制及其表征技术[J]. 储能科学与技术, 2019, 8(6): 1024-1032. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||