储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 965-983.doi: 10.19799/j.cnki.2095-4239.2024.0915

• 储能新锐科学家专刊 • 上一篇    下一篇

LiFe x Mn1x PO40<x<1)电池稳定性与安全性的提升路径:从失效机制到综合优化策略

吉帅静1(), 王军伟2, 杜宝帅3, 徐丽4, 楼平5, 管敏渊5, 汤舜2, 程时杰2, 曹元成2()   

  1. 1.华中科技大学材料科学与工程学院
    2.华中科技大学电气学院,湖北 武汉 430074
    3.国网山东省电力公司电力科学研究院,山东 济南 250003
    4.北京智慧能源研究院,北京 102209
    5.国网浙江省电力有限公司湖州供电公司,浙江 湖州 313000
  • 收稿日期:2024-09-29 修回日期:2024-10-21 出版日期:2025-03-28 发布日期:2025-04-28
  • 通讯作者: 曹元成 E-mail:d202280483@hust.edu.cn;yccao@hust.edu.cn
  • 作者简介:吉帅静(1996—),女,博士研究生,研究方向为退役动力电池综合利用与再生修复,E-mail:d202280483@hust.edu.cn
  • 基金资助:
    国家电网有限公司总部管理科技项目资助(退役磷酸铁锂电池低成本绿色再生利用关键技术5419-202199554A-0-5-ZN)

Improvement paths for the stability and safety of LiFe x Mn1x PO4 (0 < x < 1) batteries: From failure mechanisms to comprehensive optimization strategies

Shuaijing JI1(), Junwei WANG2, Baoshuai DU3, Li XU4, Ping LOU5, Minyuan GUAN5, Shun TAN2, Shijie CHENG2, Yuancheng CAO2()   

  1. 1.School of Materials Science and Engineering, Huazhong University of Science and Technology
    2.State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
    3.State Grid Shandong Electric Power Research Institute, Jinan 250003, Shandong, China
    4.Beijing Institute of Smart Energy, Huairou Laboratory, Changping District, Beijing 102209, China
    5.Huzhou Power Supply Company, State Grid Zhejiang Electric Power Company Ltd. , Huzhou 313000, Zhejiang, China
  • Received:2024-09-29 Revised:2024-10-21 Online:2025-03-28 Published:2025-04-28
  • Contact: Yuancheng CAO E-mail:d202280483@hust.edu.cn;yccao@hust.edu.cn

摘要:

在锂离子电池于电动汽车及储能领域广泛应用的背景下,磷酸锰锂铁(LiFe x Mn1-x PO4,0<x<1)作为正极材料,因其卓越的高安全性和高工作电压特性而备受瞩目。然而,LiFe x Mn1-x PO4(LFMP)材料存在的导电性不足及循环稳定性较差等问题,成为制约其商业化应用的关键性障碍。针对这些问题,本文深入探讨了LFMPO4性能衰退的根源,包括Mn的Jahn-Teller畸变效应、迟缓的反应动力学以及锰基阴极材料中的歧化反应等核心问题,并深入分析了高温高压条件下产气产热的演变机制,以期揭示其失效机理。为提升LFMP的综合性能,本文总结了多种策略,如离子掺杂与碳包裹技术的结合使用、复合包覆技术以及电解质的改良等。这些策略着重于增强LFMP正极材料的电子导电性和Li+迁移率,稳定其相结构以抑制由Jahn-Teller效应引发的Mn溶解,减小界面应力,并提升材料的热稳定性和安全性。通过实施上述策略,不仅验证了失效机理分析的准确性,还展望了高性能锂离子电池LFMP正极材料的未来发展趋势。结合当前的研究成果,为实现高比容量、稳定的循环性能、出色的倍率性能以及高安全性,可能需要综合运用多种手段,如碳涂层、元素掺杂以及电解质优化等,以期开发出具有高能量密度、长循环寿命和热稳定性的全电池基LFMP正极材料。此外,本文还紧密结合当前的产业化研究进展,综述了不同合成工艺与Mn掺杂比例调控对LFMP材料结构和性能的具体影响,这不仅将推动LFMP基材料在高性能锂离子电池领域的广泛应用,也为其商业化进程奠定了坚实的基础。

关键词: LiFe x Mn1-x PO4(0<x<1), 失效机制, Jahn-Teller效应, 掺杂改性, 包覆改性, 电解质策略改性

Abstract:

Lithium iron phosphate (LFMP, LiFe x Mn1–x PO4, where 0<x<1) has garnered significant attention as a cathode material because of its high safety and operating voltage in lithium-ion battery applications for electric vehicles and energy storage. However, poor conductivity and suboptimal cycle stability of LFMP materials remain critical bottlenecks to their commercial use. This paper delves into the root causes of LFMP performance degradation, which include the Jahn-Teller distortion effect of Mn, sluggish reaction kinetics, and disproportionation reactions in manganese-based cathode materials, and analyzes the evolution mechanism of gas and heat production under high temperature and pressure to reveal the failure mechanism. To enhance LFMP performance, this paper summarizes various strategies, such as ion doping combined with carbon coating, composite coating technology, and electrolyte modification. These approaches aim to improve the electronic conductivity and Li+ migration rate, stabilize the phase structure to suppress Mn dissolution caused by the Jahn-Teller effect, reduce interfacial stress, and enhance thermal stability and safety. Implementing these strategies has verified the failure mechanism analysis and outlined future development trends for high-performance lithium-ion battery LFMP cathode materials. Based on current research findings, attaining high specific capacity, stable cycle performance, excellent rate capability, and high safety may necessitate combining carbon coating, element doping, and electrolyte optimization. Furthermore, this paper reviews the specific impacts of various synthesis processes and Mn doping ratios on the structure and performance of LFMP materials in close conjunction with current industrial research advancements. The development of LFMP-based cathode materials exhibiting high energy density, long cycle life, and thermal stability for full-cell batteries is anticipated. This advancement will promote the widespread application of LFMP-based materials in high-performance lithium-ion batteries and lay a solid foundation for their commercialization.

Key words: LiFe x Mn1–x PO4 (0<x<1), failure mechanisms, Jahn-Teller effect, doping modification, coating modification, electrolyte modification strategies

中图分类号: