储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 583-600.doi: 10.19799/j.cnki.2095-4239.2024.0771
梁振飞1(), 王兴兴2, 胡皓晨3, 李艳红2, 欧阳博学2, 孙晓云3, 高瑞茂2, 叶骏2, 王德仁3(
)
收稿日期:
2024-08-15
修回日期:
2024-10-28
出版日期:
2025-02-28
发布日期:
2025-03-18
通讯作者:
王德仁
E-mail:974987025@qq.com;dr_wang@ustb.edu.cn
作者简介:
梁振飞(1979—),男,本科,高级工程师,研究方向为电力系统及自动化、新能源,E-mail:974987025@qq.com;
基金资助:
Zhenfei LIANG1(), Xingxing WANG2, Haochen HU3, Yanhong LI2, Boxue OUYANG2, Xiaoyun SUN3, Ruimao GAO2, Jun YE2, Deren WANG3(
)
Received:
2024-08-15
Revised:
2024-10-28
Online:
2025-02-28
Published:
2025-03-18
Contact:
Deren WANG
E-mail:974987025@qq.com;dr_wang@ustb.edu.cn
摘要:
随着清洁能源地位日益提升,储能技术需求变得更加多样化。锌溴液流电池(zinc-bromine flow batteries, ZBFBs)作为一种高效、可持续的中长时储能技术,因其高能量密度、长寿命和低成本而备受关注。该体系通过使用锌和溴作为活性材料,在电解质溶液中存储和释放能量。本文综述了锌溴液流电池的基本工作原理、应用背景,着重总结了隔膜和电解液的优化策略及最新的发展潜力。首先,介绍了锌溴电池的充放电机制及其电化学行为。随后,分析了影响电池性能的关键因素,包括电解质组成及其浓度、隔膜的类型和结构,特别讨论了隔膜在缓解锌枝晶现象、提升捕获溴能力、提升力学性能、提高离子交换率和导电能力方面的修饰技术发展现状;同时探讨了电解液在缓解锌枝晶、提升电导率及流速影响方面的优化。最后,总结了现阶段研究中的问题和未来的发展方向,强调材料创新、系统集成和规模化应用对制备高性能、低成本锌溴液流电池的重要性。本文旨在为研究人员提供锌溴电池领域的最新进展,以指引未来的研究方向和技术突破。
中图分类号:
梁振飞, 王兴兴, 胡皓晨, 李艳红, 欧阳博学, 孙晓云, 高瑞茂, 叶骏, 王德仁. 锌溴液流电池电解液与隔膜技术研究进展[J]. 储能科学与技术, 2025, 14(2): 583-600.
Zhenfei LIANG, Xingxing WANG, Haochen HU, Yanhong LI, Boxue OUYANG, Xiaoyun SUN, Ruimao GAO, Jun YE, Deren WANG. Advancements in electrolyte and membrane technologies for zinc-bromine flow batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 583-600.
1 | ANG T Z, SALEM M, KAMAROL M, et al. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions[J]. Energy Strategy Reviews, 2022, 43: 100939. DOI:10.1016/j.esr.2022.100939. |
2 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. DOI:10.1021/cr100290v. |
3 | YANG Z G, LIU J, BASKARAN S, et al. Enabling renewable energy—And the future grid—With advanced electricity storage[J]. JOM, 2010, 62(9): 14-23. DOI:10.1007/s11837-010-0129-0. |
4 | DEGUENON L, YAMEGUEU D, MOUSSA KADRI S, et al. Overcoming the challenges of integrating variable renewable energy to the grid: A comprehensive review of electrochemical battery storage systems[J]. Journal of Power Sources, 2023, 580: 233343. DOI:10.1016/j.jpowsour.2023.233343. |
5 | YANG Y Q, BREMNER S, MENICTAS C, et al. Battery energy storage system size determination in renewable energy systems: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 109-125. DOI:10.1016/j.rser.2018.03.047. |
6 | MENÉNDEZ J, FERNÁNDEZ-ORO J M, GALDO M, et al. Efficiency analysis of underground pumped storage hydropower plants[J]. Journal of Energy Storage, 2020, 28: 101234. DOI:10.1016/j.est.2020.101234. |
7 | ZHANG L Y, YU G H. Recent developments in materials and chemistries for redox flow batteries[J]. ACS Materials Letters, 2023, 5(11): 3007-3009. DOI:10.1021/acsmaterialslett.3c01191. |
8 | LIM H S, LACKNER A M, KNECHTLI R C. Zinc-bromine secondary battery[J]. Journal of the Electrochemical Society, 124(8): 1154-1157. DOI:10.1149/1.2133517. |
9 | WANG W, LUO Q T, LI B, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials, 2013, 23(8): 970-986. DOI:10.1002/adfm.201200694. |
10 | NOACK D J, ROZNYATOVSKAYA D N, HERR T, et al. The chemistry of redox-flow batteries[J]. Angewandte Chemie International Edition, 2015, 54(34): 9776-9809. DOI:10.1002/anie.201410823. |
11 | XU P C, LI T Y, ZHENG Q, et al. A low-cost bromine-fixed additive enables a high capacity retention zinc-bromine batteries[J]. Journal of Energy Chemistry, 2022, 65: 89-93. DOI:10.1016/j.jechem.2021.05.036. |
12 | KIM M, YUN D, JEON J. Effect of a bromine complex agent on electrochemical performances of zinc electrodeposition and electrodissolution in Zinc-Bromide flow battery[J]. Journal of Power Sources, 2019, 438: 227020. DOI:10.1016/j.jpowsour. 2019.227020. |
13 | 刘金宇, 李丹, 王丽华, 等. 高质子选择性的SPEEK/SGO质子交换膜制备及钒电池应用[J]. 储能科学与技术, 2018, 7(1): 66-74. DOI: 10.12028/j.issn.2095-4239.2017.0148. |
LIU J Y, LI D, WANG L H, et al. SPEEK/SGO proton exchange membranes with superior proton selectivity for vanadium redox battery[J]. Energy Storage Science and Technology, 2018, 7(1): 66-74. DOI: 10.12028/j.issn.2095-4239.2017.0148. | |
14 | 王茜. 筛分效应Nafion复合膜及其全钒液流电池性能研究[D]. 大连:大连理工大学. |
WANG Q. Study on the performance of Nafion composite membrane and all-vanadium flow battery with screening effect [D]. Dalian: Dalian University of Technology, 2018. | |
15 | 张祺, 张苗苗, 孟琳. N-甲基-N-丁基吡咯烷溴化物和N-甲基-N-乙基吡咯烷溴化物在锌溴液流电池中的应用[J]. 电化学, 2017, 23(6): 694-701. |
ZHANG Q, ZHANG M M, MENG L. Applications of N-methyl-N-butyl-pyrrolidinium bromide and N-methyl-N-ethyl-pyrrolidinium bromide in Zn-Br flow batteries[J]. Journal of Electrochemistry, 2017, 23(6): 694-701. | |
16 | HUANG Z B, MU A L, WU L X, et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7786-7810. DOI:10.1021/acssuschemeng.2c01372. |
17 | DAI C L, HU L Y, JIN X T, et al. Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density[J]. Science Advances, 2022, 8(28): eabo6688. DOI:10.1126/sciadv.abo6688. |
18 | BISWAS S, SENJU A, MOHR R, et al. Minimal architecture zinc-bromine battery for low cost electrochemical energy storage[J]. Energy & Environmental Science, 2017, 10(1): 114-120. DOI:10.1039/C6EE02782B. |
19 | LI M Q, SU H, QIU Q G, et al. A quaternized polysulfone membrane for zinc-bromine redox flow battery[J]. Journal of Chemistry, 2014, 2014(1): 321629. DOI:10.1155/2014/321629. |
20 | LU W J, LI T Y, YUAN C G, et al. Advanced porous composite membrane with ability to regulate zinc deposition enables dendrite-free and high-areal capacity zinc-based flow battery[J]. Energy Storage Materials, 2022, 47: 415-423. DOI:10.1016/j.ensm.2022.02.034. |
21 | HU J, YUE M, ZHANG P H, et al. A boron nitride nanosheets composite membrane for a long-life zinc-based flow battery[J]. Angewandte Chemie International Edition, 2020, 59(17): 6715-6719. DOI:10.1002/anie.201914819. |
22 | KIM R, JUNG J, LEE J H, et al. Modulated Zn deposition by glass fiber interlayers for enhanced cycling stability of Zn-Br redox flow batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(36): 12242-12251. DOI:10.1021/acssuschemeng.1c03796. |
23 | LEE J N, DO E, KIM Y, et al. Development of titanium 3D mesh interlayer for enhancing the electrochemical performance of zinc-bromine flow battery[J]. Scientific Reports, 2021, 11(1): 4508. DOI:10.1038/s41598-021-83347-1. |
24 | KIM R, KIM H G, DOO G, et al. Ultrathin Nafion-filled porous membrane for zinc/bromine redox flow batteries[J]. Scientific Reports, 2017, 7(1): 10503. DOI:10.1038/s41598-017-10850-9. |
25 | KIM R, YUK S, LEE J H, et al. Scaling the water cluster size of Nafion membranes for a high performance Zn/Br redox flow battery[J]. Journal of Membrane Science, 2018, 564: 852-858. DOI:10.1016/j.memsci.2018.07.091. |
26 | HAN D B, SHANMUGAM S. Active material crossover suppression with bi-ionic transportability by an amphoteric membrane for Zinc-Bromine redox flow battery[J]. Journal of Power Sources, 2022, 540: 231637. DOI:10.1016/j.jpowsour. 2022.231637. |
27 | GIKUNOO E K, HAN D B, VINOTHKANNAN M, et al. Synthesis and characterization of highly durable hydrocarbon-based composite membrane for zinc-bromine redox flow battery[J]. Journal of Power Sources, 2023, 563: 232821. DOI:10.1016/j.jpowsour.2023.232821. |
28 | HUA L, LU W, LI T, et al. A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery[J]. Materials Today Energy, 2021, 21: 100763. DOI:10.1016/j.mtener.2021.100763. |
29 | NARESH R P, RAGUPATHY P, ULAGANATHAN M. Carbon nanotube scaffolds entrapped in a gel matrix for realizing the improved cycle life of zinc bromine redox flow batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 48110-48118. DOI:10.1021/acsami.1c14324. |
30 | HAN D B, SHIN K, KIM H T, et al. Functionalized metal-organic framework modified membranes with ultralong cyclability and superior capacity for zinc/bromine flowless batteries[J]. Journal of Materials Chemistry A, 2024, 12(23): 13970-13979. DOI:10.1039/D4TA01005A. |
31 | CHA J S, LEE J I, SEO N U, et al. Scalable design of zinc-bromine flow battery in 3-dimensional honeycomb lattice for superior low-cost battery[J]. SSRN Electronic Journal, DOI:10.2139/ssrn.4089539 |
32 | BU F X, SUN Z H, ZHOU W H, et al. Reviving Zn0 dendrites to electroactive Zn2+ by mesoporous MXene with active edge sites[J]. Journal of the American Chemical Society, 2023, 145(44):24284-24293. |
33 | MAHMOOD A, ZHENG Z, CHEN Y. Zinc-bromine batteries: Challenges, prospective solutions, and future[J]. Advanced Science, 2024, 11(3): 2305561. DOI:10.1002/advs.202305561. |
34 | XU Z C, WANG J, YAN S C, et al. Modeling of Zinc Bromine redox flow battery with application to channel design[J]. Journal of Power Sources, 2020, 450: 227436. DOI:10.1016/j.jpowsour. 2019.227436. |
35 | MITHA A, YAZDI D A Z, AHMED M, et al. Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries[J]. ChemElectroChem, 2018, 5(17): 2409-2418. DOI:10.1002/celc.201800572. |
36 | BAE S, LEE J, KIM D S. The effect of Cr3+-Functionalized additive in zinc-bromine flow battery[J]. Journal of Power Sources, 2019, 413: 167-173. DOI:10.1016/j.jpowsour.2018.12.038. |
37 | YANG J H, YANG H S, RA H W, et al. Effect of a surface active agent on performance of zinc/bromine redox flow batteries: Improvement in current efficiency and system stability[J]. Journal of Power Sources, 2015, 275: 294-297. DOI:10.1016/j.jpowsour. 2014.10.208. |
38 | HAN S H, KIM S, LIM H Y, et al. Modified viologen-assisted reversible bromine capture and release in flowless zinc-bromine batteries[J]. Chemical Engineering Journal, 2023, 464: 142624. DOI:10.1016/j.cej.2023.142624. |
39 | ZHANG L Q, ZHANG H M, LAI Q Z, et al. Development of carbon coated membrane for zinc/bromine flow battery with high power density[J]. Journal of Power Sources, 2013, 227: 41-47. DOI:10.1016/j.jpowsour.2012.11.033. |
40 | MUNAIAH Y, DHEENADAYALAN S, RAGUPATHY P, et al. High performance carbon nanotube based electrodes for zinc bromine redox flow batteries[J]. ECS Journal of Solid State Science and Technology, 2013, 2(10): M3182-M3186. DOI:10.1149/2.024310jss. |
41 | WU M C, ZHAO T S, JIANG H R, et al. High-performance zinc bromine flow battery via improved design of electrolyte and electrode[J]. Journal of Power Sources, 2017, 355: 62-68. DOI:10.1016/j.jpowsour.2017.04.058. |
42 | KIM D, JEON J. Study on durability and stability of an aqueous electrolyte solution for zinc bromide hybrid flow batteries[J]. Journal of Physics: Conference Series, 2015, 574: 012074. DOI:10.1088/1742-6596/574/1/012074. |
43 | WU M C, ZHAO T S, WEI L, et al. Improved electrolyte for zinc-bromine flow batteries[J]. Journal of Power Sources, 2018, 384: 232-239. DOI:10.1016/j.jpowsour.2018.03.006. |
44 | WANG S N, WANG Z Y, YIN Y B, et al. A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation[J]. Energy & Environmental Science, 2021, 14(7): 4077-4084. DOI:10.1039/D1EE00783A. |
45 | KIM D, JEON J. A Zn(ClO4)2 supporting material for highly reversible zinc-bromine electrolytes[J]. Bulletin of the Korean Chemical Society, 2016, 37(3): 299-304. DOI:10.1002/bkcs.10669. |
46 | RAJARATHNAM G P, SCHNEIDER M, SUN X H, et al. The influence of supporting electrolytes on zinc half-cell performance in zinc/bromine flow batteries[J]. Journal of the Electrochemical Society, 2016, 163(1): A5112-A5117. DOI:10.1149/2.0151601jes. |
47 | RAJARATHNAM G P, MONTOYA A, VASSALLO A M. The influence of a chloride-based supporting electrolyte on electrodeposited zinc in zinc/bromine flow batteries[J]. Electrochimica Acta, 2018, 292: 903-913. DOI:10.1016/j.electacta.2018.08.150. |
48 | SUN K E K, HOANG T K A, DOAN T N L, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9681-9687. DOI:10.1021/acsami.6b16560. |
49 | BANIK S J, AKOLKAR R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive[J]. Journal of the Electrochemical Society, 2013, 160(11): D519-D523. DOI:10.1149/2.040311jes. |
50 | LEE Y, YUN D, PARK J, et al. An organic imidazolium derivative additive inducing fast and highly reversible redox reactions in zinc-bromine flow batteries[J]. Journal of Power Sources, 2022, 547: 232007. DOI:10.1016/j.jpowsour.2022.232007. |
51 | JEON J D, YANG H S, SHIM J, et al. Dual function of quaternary ammonium in Zn/Br redox flow battery: Capturing the bromine and lowering the charge transfer resistance[J]. Electrochimica Acta, 2014, 127: 397-402. DOI:10.1016/j.electacta.2014.02.073. |
52 | WANG S N, LI T Y, YIN Y B, et al. High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive[J]. Nano Energy, 2022, 96: 107120. DOI:10.1016/j.nanoen. 2022.107120. |
53 | PARK H, PARK G, KUMAR S, et al. Synergistic effect of electrolyte additives on the suppression of dendrite growth in a flowless membraneless Zn-Br2 battery[J]. Journal of Power Sources, 2023, 580: 233212. DOI:10.1016/j.jpowsour.2023.233212. |
54 | LIU S Y, WU J, HUANG J Q, et al. A high-energy efficiency static membrane-free zinc-bromine battery enabled by a high concentration hybrid electrolyte[J]. Sustainable Energy & Fuels, 2022, 6(4): 1148-1155. DOI:10.1039/D1SE01749G. |
55 | JIMÉNEZ-BLASCO U, ARREBOLA J C, CABALLERO A. Recent advances in bromine complexing agents for zinc-bromine redox flow batteries[J]. Materials, 2023, 16(23): 7482. DOI:10.3390/ma16237482. |
56 | LAI Q Z, ZHANG H M, LI X F, et al. A novel single flow zinc-bromine battery with improved energy density[J]. Journal of Power Sources, 2013, 235: 1-4. DOI:10.1016/j.jpowsour. 2013.01.193. |
57 | BRYANS D, MCMILLAN B G, SPICER M, et al. Complexing additives to reduce the immiscible phase formed in the hybrid ZnBr2 flow battery[J]. Journal of the Electrochemical Society, 2017, 164(13): A3342-A3348. |
58 | XU P C, XIE C X, WANG C H, et al. A membrane-free interfacial battery with high energy density[J]. Chemical Communications, 2018, 54(82): 11626-11629. DOI:10.1039/c8cc06048g. |
59 | GAO L J, LI Z X, ZOU Y P, et al. A high-performance aqueous zinc-bromine static battery[J]. iScience, 2020, 23(8): 101348. DOI:10.1016/j.isci.2020.101348. |
60 | LI X J, LI T Y, XU P C, et al. A complexing agent to enable a wide-temperature range bromine-based flow battery for stationary energy storage[J]. Advanced Functional Materials, 2021, 31(22): 2100133. DOI:10.1002/adfm.202100133. |
61 | WU W L, XU S C, LIN Z R, et al. A polybromide confiner with selective bromide conduction for high performance aqueous zinc-bromine batteries[J]. Energy Storage Materials, 2022, 49: 11-18. DOI:10.1016/j.ensm.2022.03.052. |
62 | SCHNEIDER M, RAJARATHNAM G P, EASTON M E, et al. The influence of novel bromine sequestration agents on zinc/bromine flow battery performance[J]. RSC Advances, 2016, 6(112): 110548-110556. DOI:10.1039/C6RA23446A. |
63 | YANG H S, PARK J H, RA H W, et al. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery[J]. Journal of Power Sources, 2016, 325: 446-452. DOI:10.1016/j.jpowsour.2016.06.038. |
64 | ADITH R V, NARESH R P, MARIYAPPAN K, et al. An optimistic approach on flow rate and supporting electrolyte for enhancing the performance characteristics of Zn-Br2 redox flow battery[J]. Electrochimica Acta, 2021, 388: 138451. DOI:10.1016/j.electacta. 2021.138451. |
65 | ZHANG Y Q, WANG G X, LIU R Y, et al. Operational parameter analysis and performance optimization of zinc-bromine redox flow battery[J]. Energies, 2023, 16(7): 3043. DOI:10.3390/en16073043. |
66 | ZHANG H M, LU W J, LI X F. Progress and perspectives of flow battery technologies[J]. Electrochemical Energy Reviews, 2019, 2(3): 492-506. DOI:10.1007/s41918-019-00047-1. |
[1] | 要义杰, 张峻伟, 赵燕君, 梁宏成, 赵冬妮. 界面动力学对钠离子电池低温性能的影响[J]. 储能科学与技术, 2025, 14(1): 30-41. |
[2] | 李昌豪, 汪书苹, 杨献坤, 曾子琪, 周昕玥, 谢佳. 低温型锂离子电池中的非水电解质研究进展[J]. 储能科学与技术, 2024, 13(7): 2286-2299. |
[3] | 姜森, 陈龙, 孙创超, 王金泽, 李如宏, 范修林. 低温锂电池电解液的发展及展望[J]. 储能科学与技术, 2024, 13(7): 2270-2285. |
[4] | 陆洋, 闫帅帅, 马骁, 刘誌, 章伟立, 刘凯. 低温锂电池电解液的研究与应用[J]. 储能科学与技术, 2024, 13(7): 2224-2242. |
[5] | 廖世接, 魏颖, 黄云辉, 胡仁宗, 许恒辉. 间二氟苯稀释剂稳定电极界面助力低温锂金属电池[J]. 储能科学与技术, 2024, 13(7): 2124-2130. |
[6] | 王美龙, 薛煜瑞, 胡文茜, 杜可遇, 孙瑞涛, 张彬, 尤雅. 低温磷酸铁锂电池用全醚高熵电解液的设计研究[J]. 储能科学与技术, 2024, 13(7): 2131-2140. |
[7] | 李征, 杨振忠, 王琼, 胡仁宗. 基于专利情报分析的锂离子电池用低温电解液的发展现状和研究进展[J]. 储能科学与技术, 2024, 13(7): 2317-2326. |
[8] | 程广玉, 刘新伟, 刘硕, 顾海涛, 王可. 调控电解液溶剂组分实现LCO/C低温18650电池循环寿命显著提升[J]. 储能科学与技术, 2024, 13(7): 2171-2180. |
[9] | 赵飞, 陈英华, 马征, 李茜, 明军. 钾离子电池低温电解质的研究进展[J]. 储能科学与技术, 2024, 13(7): 2308-2316. |
[10] | 王立锋, 任乃青, 杨海, 姚雨, 余彦. 低温钠离子电池电解液研究进展[J]. 储能科学与技术, 2024, 13(7): 2206-2223. |
[11] | 李泽珩, 徐磊, 姚雨星, 闫崇, 翟喜民, 郝雪纯, 陈爱兵, 黄佳琦, 别晓非, 孙焕丽, 范丽珍, 张强. 电解液改善锂离子电池低温析锂研究进展[J]. 储能科学与技术, 2024, 13(7): 2192-2205. |
[12] | 汪书苹, 杨献坤, 李昌豪, 曾子琪, 程宜风, 谢佳. 乙基膦酸二乙酯基阻燃宽温域电解液在锂离子电池中的应用[J]. 储能科学与技术, 2024, 13(7): 2161-2170. |
[13] | 钟国彬, 姚鑫, 刘永超, 侯倩, 项宏发. 锂离子电池高安全复合隔膜的挑战和未来展望[J]. 储能科学与技术, 2024, 13(6): 1794-1806. |
[14] | 卢俊杰, 彭丹, 倪文静, 杨媛, 汪靖伦. 锂/氟化碳电池电解液的研究进展[J]. 储能科学与技术, 2024, 13(5): 1487-1495. |
[15] | 石敏, 蒋鹏杰, 徐琛, 贺鑫, 梁宵. 抑制锂金属负极枝晶的电解液调控策略[J]. 储能科学与技术, 2024, 13(5): 1620-1634. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||