储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 583-600.doi: 10.19799/j.cnki.2095-4239.2024.0771

• 储能材料与器件 • 上一篇    下一篇

锌溴液流电池电解液与隔膜技术研究进展

梁振飞1(), 王兴兴2, 胡皓晨3, 李艳红2, 欧阳博学2, 孙晓云3, 高瑞茂2, 叶骏2, 王德仁3()   

  1. 1.华电(海西)新能源有限公司,青海 海西 817000
    2.中国华电科工集团有限公司,北京 100160
    3.北京科技大学新材料技术研究院,北京 100083
  • 收稿日期:2024-08-15 修回日期:2024-10-28 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 王德仁 E-mail:974987025@qq.com;dr_wang@ustb.edu.cn
  • 作者简介:梁振飞(1979—),男,本科,高级工程师,研究方向为电力系统及自动化、新能源,E-mail:974987025@qq.com
  • 基金资助:
    中国华电科工集团有限公司集团“揭榜挂帅”研发计划(CHDKJ21-01-102)

Advancements in electrolyte and membrane technologies for zinc-bromine flow batteries

Zhenfei LIANG1(), Xingxing WANG2, Haochen HU3, Yanhong LI2, Boxue OUYANG2, Xiaoyun SUN3, Ruimao GAO2, Jun YE2, Deren WANG3()   

  1. 1.HuaDian (Haixi) New Energy Co. , Ltd. , Haixi 817000, Qinghai, China
    2.China Huadian Corporation Ltd. , Beijing 100160, China
    3.Institute for Advanced Materials and Technology, University of Science and Technology, Beijing 100083, China
  • Received:2024-08-15 Revised:2024-10-28 Online:2025-02-28 Published:2025-03-18
  • Contact: Deren WANG E-mail:974987025@qq.com;dr_wang@ustb.edu.cn

摘要:

随着清洁能源地位日益提升,储能技术需求变得更加多样化。锌溴液流电池(zinc-bromine flow batteries, ZBFBs)作为一种高效、可持续的中长时储能技术,因其高能量密度、长寿命和低成本而备受关注。该体系通过使用锌和溴作为活性材料,在电解质溶液中存储和释放能量。本文综述了锌溴液流电池的基本工作原理、应用背景,着重总结了隔膜和电解液的优化策略及最新的发展潜力。首先,介绍了锌溴电池的充放电机制及其电化学行为。随后,分析了影响电池性能的关键因素,包括电解质组成及其浓度、隔膜的类型和结构,特别讨论了隔膜在缓解锌枝晶现象、提升捕获溴能力、提升力学性能、提高离子交换率和导电能力方面的修饰技术发展现状;同时探讨了电解液在缓解锌枝晶、提升电导率及流速影响方面的优化。最后,总结了现阶段研究中的问题和未来的发展方向,强调材料创新、系统集成和规模化应用对制备高性能、低成本锌溴液流电池的重要性。本文旨在为研究人员提供锌溴电池领域的最新进展,以指引未来的研究方向和技术突破。

关键词: 锌溴液流电池, 电解液, 隔膜, 长时储能技术

Abstract:

As the significance of clean energy grows, there is an increased and diverse demand for energy-storage technologies. Zinc-bromine flow batteries (ZBFBs) are efficient and sustainable medium and long-term energy storage technologies that have attracted attention owing to their high energy density, long life, and low cost. The system uses zinc and bromine as active materials to store and release energy in electrolyte solutions. In this study, we summarize the basic working principle and application background of ZBFBs, the optimization strategy, and the latest development potential of diaphragm and electrolyte. First, we introduce the charge-discharge mechanism and electrochemical behavior of zinc-bromine batteries. Subsequently, we analyze the key factors that affect the performance of the battery, including the composition and concentration of electrolytes, the type and structure of the diaphragm, and the development status of modification technology of the diaphragm. Specifically, we discuss how these modifications alleviate the zinc dendrite phenomenon, as well as improve bromine capture, mechanical properties, ion-exchange rates, and conductivity. We also discuss the optimization of electrolytes in alleviating zinc dendrite and improving conductivity and flow rate. Finally, we summarize the challenges in current ZBFB research and future development directions. We emphasize the importance of material innovation, system integration, and large-scale application in achieving high-performance and low-cost ZBFBs. This study aims to present researchers with the latest progress in ZBFB technology, thereby guiding future research directions and facilitating technological breakthroughs.

Key words: zinc-bromine flow battery, electrolyte, membrane, energy storage technology

中图分类号: